• Lu, X., Y. Hu, Y. Yang, T. Neumann, A. Omar, R. Baize, et al. (2021). New ocean subsurface optical properties from space lidars: CALIOP/CALIPSO and ATLAS/ICESat-2. Earth and Space Science, Vol. 8, Issue 10.  https://doi.org/10.1029/2021EA001839


  • Malambo, L., S. C. Popescu (2021). Assessing the agreement of ICESat-2 terrain and canopy height with airborne lidar over US ecozones. Remote Sensing of Environment, Vol. 266. https://doi.org/10.1016/j.rse.2021.112711.


  • Palm S. P., P. Selmer, J. Yorks, S. Nicholls, and E. Nowottnick (2021). Planetary Boundary Layer Height Estimates From ICESat-2 and CATS Backscatter Measurements. Frontiers in Remote Sensing, Vol. 2. https://doi.org/10.3389/frsen.2021.716951 


  • Zhang, J., J. Tian, X. Li, L. Wang, B. Chen, H. Gong, R. Ni, B. Zhou, and C. Yang (2021). Leaf area index retrieval with ICESat-2 photon counting LiDAR. International Journal of Applied Earth Observation and Geoinformation,
    Vol. 103. https://doi.org/10.1016/j.jag.2021.102488


  • Magruder, L., A. Neuenschwander, and B. Klotz (2021). Digital terrain model elevation corrections using space-based imagery and ICESat-2 laser altimetry. Remote Sensing of Environment, Vol. 264. https://doi.org/10.1016/j.rse.2021.112621


  • Herzfeld, U., A. Hayes, S. Palm, D. Hancock, M. Vaughan and K. Barbieri (2021). Detection and Height Measurement of Tenuous Clouds and Blowing Snow in ICESat-2 ATLAS Data. Geophysical Research Letters, Vol. 48. https://doi.org/10.1029/2021GL093473


  • Palm, S. P., Y. Yang, U. Herzfeld, D. Hancock, A. Hayes, P. Selmer, et al. (2021). ICESat-2 atmospheric channel description, data processing and first results. Earth and Space Science, Vol. 8, Issue: 8.  https://doi.org/10.1029/2020EA001470


  • Fons, S. W., N. T. Kurtz, M. Bagnardi, A. A. Petty, and R. L. Tilling (2021). Assessing CryoSat-2 Antarctic snow freeboard retrievals using data from ICESat-2. Earth and Space Science, Vol. 8, Issue: 7. https://doi.org/10.1029/2021EA001728


  • Becker, M. K., S. L. Howard, H. A. Fricker,  L. Padman, C. Mosbeux, and M.R. Siegfried (2021). Buoyancy-driven flexure at the front of Ross Ice Shelf, Antarctica, observed with ICESat-2 laser altimetry. Geophysical Research Letters, Vol. 48, Issue: 12. https://doi.org/10.1029/2020GL091207



  • Nandy, S., R. Srinet, and H. Padalia (2021). Mapping forest height and aboveground biomass by integrating ICESat-2, Sentinel-1 and Sentinel-2 data using Random forest algorithm in northwest Himalayan foothills of India. Geophysical Research Letters, Vol. 48, Issue 14. https://doi.org/10.1029/2021GL093799


  • Babbel, B. J., C.E. Parrish, L.A. Magruder (2021). ICESat‐2 elevation retrievals in support of satellite derived bathymetry for global science applications, Geophysical Research Letters, Vol. 0 Issue:  https://doi.org/10.1029/2020GL090629.
  • Tian, X. and J. Shan (2021). Comprehensive Evaluation of the ICESat-2 ATL08 Terrain Product, IEEE Transactions on Geoscience and Remote Sensing, 1-15, doi: 10.1109/TGRS.2021.3051086.
  • Chen, Y., Z. Zhu, Y. Le, Z. Qiu, G. Chen, and L. Wang (2021). Refraction correction and coordinate displacement compensation in nearshore bathymetry using ICESat-2 lidar data and remote-sensing images, Opt. Express 29, 2411-2430. https://doi.org/10.1364/OE.409941.
  • Petty, A.A., M. Bagnardi, N. Kurtz, R. Tilling, S. Fons, T. Armitage, C. Horvat, and R. Kwok (2021). Assessment of ICESat‐2 sea ice surface classification with Sentinel‐2 imagery: implications for freeboard and new estimates of lead and floe geometry, Earth and Space Science, https://doi.org/10.1029/2020EA001491
  • Kwok, R., A.A. Petty, M. Bagnardi, N.T. Kurtz, G.F. Cunningham, A. Ivanoff, and S. Kacimi (2021). Refining the sea surface identification approach for determining freeboards in the ICESat-2 sea ice products, The Cryosphere, 15, 821–833, 2021, https://tc.copernicus.org/articles/15/821/2021/tc-15-821-2021.html.
  • Zhang, Y., Y. Pang, D. Cui, Y. Ma, and L. Chen (2021). Accuracy Assessment of the ICESat-2/ATL06 Product in the Qilian Mountains Based on CORS and UAV Data, IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021, https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9292933.
  • Campbell, B.A., (2021). ICESat-2 and the Trees Around the GLOBE student research campaign: Looking at Earth's tree height, one tree at a time, Acta Astronautica, Volume 182, May 2021, Pages 203-207, https://doi.org/10.1016/j.actaastro.2021.02.002.
  • Wang, S., P. Alexander, Q. Wu, M. Tedesco, and S. Shu, (2021). Characterization of ice shelf fracture features using ICESat-2 – A case study over the Amery Ice Shelf, Remote Sensing of Environment, 255, 112266. 10.1016/j.rse.2020.112266.
  • Thomas, N., A. P. Pertiwi, D. Traganos, D. Lagomasino, D. Poursanidis, S. Moreno, and L. Fatoyinbo (2021). Space‐Borne Cloud‐Native Satellite‐Derived Bathymetry (SDB) Models using ICESat‐2 and SENTINEL‐2, Geophysical Research Letters, Volume: 0, Issue: ja, doi.org/10.1029/2020GL092170.
  • Zhang, W., N. Xu, Y. Ma, B. Yang, Z. Zhang, X.H. Wang, and S. Li (2021). A maximum bathymetric depth model to simulate satellite photon-counting lidar performance, ISPRS Journal of Photogrammetry and Remote Sensing, Volume 174, 2021, Pages 182-197, ISSN 0924-2716, https://doi.org/10.1016/j.isprsjprs.2021.02.013.
  • Adusumilli, S., M. A. Fish, H. A. Fricker, B. Medley (2021). Atmospheric River Precipitation Contributed to Rapid Increases in Surface Height of the West Antarctic Ice Sheet in 2019, Geophysical Research Letters, Volume 48, Issue 5, ISSN 0094-8276, 03/2021, DOI: 10.1029/2020GL091076.
  • Thomas, T.C., S.B. Luthcke, T.A. Pennington, J.B. Nicholas, and D.D. Rowlands (2021). ICESat‐2 Precision Orbit Determination, Earth and Space Science, ISSN: 2333-5084, 02/2021, Volume 0, Issue Ja, DOI: 10.1029/2020EA001496.
  • Yu, Y., D.T. Sandwell, S.T. Gille, Ana B. Villas Bôas (2021). Assessment of ICESat-2 for the recovery of ocean topography, Geophysical Journal International, 2021, ggab084, https://doi.org/10.1093/gji/ggab084.
  • Walker, C.C., M. Becker, H.A. Fricker (2021). A High Resolution, Three-Dimensional View of the D-28 Calving Event from Amery Ice Shelf with ICESat-2 and Satellite Imagery, Geophysical Research Letters, 48 (3). https://doi.org/10.1029/2020GL091200.
  • Xie, H., Y. Sun, X. Liu, Q. Xu, Y. Guo, S. Liu, X. Xu, S. Liu and X. Tong (2021). Shore Zone Classification from ICESat-2 Data over Saint Lawrence Island, Marine Geodesy, DOI: 10.1080/01490419.2021.1898498.


  • Thomas, T.C. (2021). ICESat‐2 Precision Orbit Determination, Earth and space science (Hoboken, N.J.), 02/2021, ISSN: 2333-5084, Volume: 0   Issue: ja, https://doi.org/10.1029/2020EA001496.

    Lai, Y.-R.  and L. Wang (2021). Monthly Surface Elevation Changes of the Greenland Ice Sheet From ICESat-1, CryoSat-2, and ICESat-2 Altimetry Missions, IEEE Geoscience and Remote Sensing Letters, DOI: 10.1109/LGRS.2021.3058956.

    Osama, N., B. Yang, Y. Ma, and M. Freeshah (2021). A Digital Terrain Modeling Method in Urban Areas by the ICESat-2 (Generating precise terrain surface profiles from photon-counting technology), Photogrammetric Engineering & Remote Sensing, Volume 87, Number 4, April 2021, pp. 237-248(12), American Society for Photogrammetry and Remote Sensing, DOI: https://doi.org/10.14358/PERS.87.4.237.

    Bae, S., B. Helgeson, M. James, L. Magruder, J. Sipps, S. Luthke, T. Thomas (2021). Performance of ICESat‐2 Precision Pointing Determination, Earth and space science (Hoboken, N.J.), ISSN: 2333-5084, 04/2021, Volume: 8, Issue: 4, DOI: 10.1029/2020EA001478.


  • Morison, J., R. Kwok, S. Dickinson, R. Andersen, C. Peralta-Ferriz, D. Morison, I. Rigor, S. Dewey, and J. Guthrie, (2021). The Cyclonic Mode of Arctic Ocean Circulation, Journal of Physical Oceanography, Vol. 51, Issue 4, Page(s): 1053–1075, DOI: https://doi.org/10.1175/JPO-D-20-0190.1.


  • Magruder, L., T. Neumann, and N. Kurtz (2021). ICESat‐2 Early Mission Synopsis and Observatory Performance, Earth and space science, ISSN:2333-5084, May 2021, Volume: 8 Issue: 5, DOI:10.1029/2020EA001555.


  • Lu, X. , Y. Hu, Y. Yang, M. Vaughan, S. Palm, C. Trepte, A. Omar, P. Lucker, and R Baize (2021). Enabling value added scientific applications of ICESat‐2 data with effective removal of afterpulses, Earth and space science (Hoboken, N.J.), ISSN: 2333-5084, 05/2021, Volume: 0  Issue: ja, DOI: 10.1029/2021EA001729.


  • Lee, Z., M. Shangguan, R. A. Garcia, W. Lai, X. Lu, J. Wang, and X. Yan, (2021). Confidence Measure of the Shallow-Water Bathymetry Map Obtained through the Fusion of Lidar and Multiband Image Data, Journal of Remote Sensing, Vol. 2021, Article ID 9841804, 16 pages, https://doi.org/10.34133/2021/9841804.


Buzzanga, B., E. Heijkoop, B.D. Hamlington, R. S. Nerem, and A. Gardner (2021). An Assessment of Regional ICESat‐2 Sea‐Level Trends, Geophysical Research Letters, ISSN: 0094-8276, 05/2021, Volume: 48 Issue: 9, DOI: 10.1029/2020GL092327.

Dandabathula, G., S. Sitiraju, and C. Jha (2021). Morphological Profiles of Sand Dunes from ICESat-2 Geolocated Photons. Journal of Geoscience and Environment Protection, 9, 71-91. doi: 10.4236/gep.2021.92005.

Fredensborg Hansen, R.M., E. Rinne, S.L. Farrell, and H. Skourup (2021). Estimation of degree of sea ice ridging in the Bay of Bothnia based on geolocated photon heights from ICESat-2, The Cryosphere, 15, 2511–2529, 2021, https://doi.org/10.5194/tc-15-2511-2021.

Hsu, H.-J., C.-Y. Huang, M. Jasinski, Y. Li, H. Gao, T. Yamanokuchi, C.-G. Wang, T.-M. Chang, H. Ren, C.-Y. Kuo, and K.-H. Tseng (2021). A semi-empirical scheme for bathymetric mapping in shallow water by ICESat-2 and Sentinel-2: A case study in the South China Sea, ISPRS Journal of Photogrammetry and Remote Sensing, 178: 1-19, DOI: 10.1016/j.isprsjprs.2021.05.012.

Li, G., J. Guo, L. Pei, S. Zhang, X. Tang and J. Yao (2021). Extraction and Analysis of the Three-Dimensional Features of Crevasses in the Amery Ice Shelf Based on ICESat-2 ATL06 Data, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 14, pp. 5796-5806, 2021, DOI: 10.1109/JSTARS.2021.3085302.

Hu, X., X. Hao, J. Wang, G. Huang, H. Li and Q. Yang (2021). Can the Depth of Seasonal Snow be Estimated From ICESat-2 Products: A Case Investigation in Altay, Northwest China, IEEE Geoscience and Remote Sensing Letters, DOI: 10.1109/LGRS.2021.3078805.

Xu, N., X. Ma, Y. Ma, P. Zhao, J. Yang and X. H. Wang (2021). Deriving highly accurate shallow water bathymetry from Sentinel-2 and ICESat-2 datasets by a multi-temporal stacking method, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, DOI: 10.1109/JSTARS.2021.3090792.

Liu, A., X. Cheng, and Z. Chen (2021), Performance evaluation of GEDI and ICESat-2 laser altimeter data for terrain and canopy height retrievals, Remote Sensing of Environment,
Volume 264, 2021, 112571, ISSN 0034-4257, DOI: 10.1016/j.rse.2021.112571.

Xie, H. et al. (2021). A Comparison and Review of Surface Detection Methods Using MBL, MABEL, and ICESat-2 Photon-Counting Laser Altimetry Data, in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, DOI: 10.1109/JSTARS.2021.3094195.

Zhao, H., R. Xu, and G. Qiao (2021). Comparaison of CRYOSAT-2 and ICESat-2 on water level monitoring of Nam Co Lake, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2021, 527–532, DOI: 10.5194/isprs-archives-XLIII-B3-2021-527-2021.

Cui, H., R. Li, T. Hao, G. Qiao, Y. He, G. Hai, H. Xie, Y. Cheng, and B. Li (2021). Field validation of ICESat-2 data along Chinare route in East Antarctica, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2021, 443–448, DOI: 10.5194/isprs-archives-XLIII-B3-2021-443-2021.

He, Y., G. Qiao, H. Li, X. Yuan, and Y. Li (2021). Unmanned aerial vehicle derived 3D model evaluation based on ICESat-2 for ice surface miro-topography analysis in East Antarctica, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2021, 463–468, DOI: 10.5194/isprs-archives-XLIII-B3-2021-463-2021.

Siegfried, M. R., and H. A. Fricker, (2021). Illuminating active subglacial lake processes with ICESat‐2 laser altimetry, Geophysical research letters, ISSN: 0094-8276, July 2021, Volume: 0 Issue: ja, DOI:10.1029/2020GL091089.

Warner, R. C., H. A. Fricker, S. Adusumilli, P. Arndt, J. Kingslake, and J. Spergel (2021). Rapid formation of an ice doline on Amery Ice Shelf, East Antarctica, Geophysical research letters, ISSN: 0094-8276, June 2021, Volume: 0 Issue: ja, DOI: 10.1029/2020GL091095.

Bagnardi, M., N. T. Kurtz, A. A. Petty, and R. Kwok (2021). Sea Surface Height Anomalies of the Arctic Ocean From ICESat‐2: A First Examination and Comparisons With CryoSat‐2, Geophysical research letters, ISSN:0094-8276, July 2021, Volume: 48 Issue: 14, DOI:10.1029/2021GL093155.

Dandabathula, G., S.R. Sitiraju, and C. Shekhar (2021). Retrieval of building heights from ICESat-2 photon data and evaluation with field measurements, Environmental Research: Infrastructure and Sustainability, Volume 1, Number 1,  IOP Publishing Ltd., https://iopscience.iop.org/article/10.1088/2634-4505/abf820.

Yu, J. et al. (2021). Accuracy Assessment of ICESat-2 Ground Elevation and Canopy Height Estimates in Mangroves, IEEE Geoscience and Remote Sensing Letters, DOI: 10.1109/LGRS.2021.3107440.

Fernando, G. (2021). Mapping the Diversity of Agricultural Systems in the Cuellaje Sector, Cotacachi, Ecuador Using ATL08 for the ICESat-2 Mission and Machine Learning Techniques, Computational Science and Its Applications – ICCSA 2021. Lecture Notes in Computer Science, vol 12957. Springer, Cham. DOI: https://doi.org/10.1007/978-3-030-87013-3_13.

Koo, Y., R. Lei, Y. Cheng, B. Cheng, H. Xie, M. Hoppmann, N.T. Kurtz, S.F. Ackley, A.M. Mestas-Nuñez (2021). Estimation of thermodynamic and dynamic contributions to sea ice growth in the Central Arctic using ICESat-2 and MOSAiC SIMBA buoy data, Remote Sensing of Environment, Volume 267, 2021, 112730, ISSN 0034-4257, https://doi.org/10.1016/j.rse.2021.112730.

Xu, Y., H. Li, B. Liu, H. Xie, B. Ozsoy-Cicek (2021). Deriving Antarctic Sea‐Ice Thickness from Satellite Altimetry and Estimating Consistency for NASA's ICESat/ICESat‐2 Missions, Geophysical research letters, ISSN 0094-8276, 09/2021, Vol. 48 Issue 20, DOI: 10.1029/2021GL093425.


  • 2020

    The following publications have been included in a special edition of Geophysical Research Letters entitled "The Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) On-Orbit Performance, Data Discoveries, and Early Science":

    • Luthcke, S.B., T.C. Thomas, T.A. Pennington, T.W. Rebold, J.B. Nicholas, D.D. Rowlands, A.S. Gardner, and S. Bae (2021). ICESat‐2 Pointing Calibration and Geolocation Performance, Earth and Space Science, https://doi.org/10.1029/2020EA001494.

      Armon, M., E. Dente, Y. Shmilovitz, A. Mushkin, T.J. Cohen, E. Morin, Y. Enzel (2020). Determining bathymetry of shallow and ephemeral desert lakes using satellite imagery and altimetry.  Geophysical Research Letters, https://doi.org/10.1029/2020GL087367
    • Horvat, C., E. Blachard-Wrigglesworth, A. Petty (2020). Observing waves in sea ice with ICESat-2. Geophysical Research Letters, https://doi.org/10.1029/2020GL087629
    • Kwok, R., G. Cunningham, S. Kacimi, M.A. Webster, N.T. Kurtz, A.A. Petty (2020). Decay of the snow cover over Arctic sea ice from ICESat-2 acquisitions during summer melt in 2019. Geophysical Research Letters. https://doi.org/10.1029/2020GL088209
    • Ryan, J.C., L.C Smith, S.W. Cooley, L.H. Pitcher, T.M. Pavelsky (2020). Global characterization of inland water reservoirs using ICESat-2 altimetry and climate reanalysis. Geophysical Research Letters. https://doi.org/10.1029/2020GL088543
    • Farrell, S. L., Duncan, K., Buckley, E. M., Richter‐Menge, J., & Li, R. (2020). Mapping Sea Ice Surface Topography in High Fidelity with ICESat‐2. Geophysical Research Letters, 47. https://doi.org/10.1029/2020GL090708
    • Tilling, R., N.T. Kurtz, M. Bagnardi, A.A. Petty, R. Kwok (2020). Detection of Melt Ponds on Arctic Summer Sea Ice from ICESat-2. Geophysical Research Letters, 47. https://doi.org/10.1029/2020GL090644
    • Fricker, H.A., P. Arndt, K.M. Brunt, R. Datta, Z. Fair, M.F. Jasinski, J. Kingslake, L.A. Magruder, M. Moussavi, A. Pope, J.J. Spergel, J. Stoll, B. Wouters (2020). ICESat-2 melt depth retrievals: application to surface melt on the Amery Ice Shelf, East Antarctica. Geophysical Research Letters, 47. https://doi.org/10.1029/2020GL090550
    • Brunt, K.M., B. Smith, T. Suterley, N. Kurtz, T. Neumann (2020). Comparisons of Satellite and Airborne Altimetry with Ground-Based Data from the Interior of the Antarctic Ice Sheet. Geophysical Reseach Letters, 47. https://doi.org/10.1029/2020GL090572
    • Wang, Q., S. Yi, W. Sun (2020). Continuous estimates of glacier mass balance in High Mountain Asia nased on ICESat-1,2 and GRACE/GRACE Follow-On data. Geophysical Research Letters, 47. https://doi.org/10.1029/2020GL090954

    Additional 2020 ICESat-2 Publications

    • Liu, M., S. Popescu, & L. Malambo (2020). Feasibility of Burned Area Mapping Based on ICESat-2 Photon Counting Data. Remote Sensing, 12(1), 24.  https://doi.org/10.3390/rs12010024
    • Calabia, A., I. Molina, & S. Jin (2020). Soil Moisture Content from GNSS Reflectometry Using Dielectric Permittivity from Fresnel Reflection Coefficients. Remote Sensing, 12(1), 122. https://doi.org/10.3390/rs12010122
    • Yuan, C., P. Gong, & Y. Bai (2020). Performance Assessment of ICESat-2 Laser Altimeter Data for Water-Level Measurement Over Lakes and Reservoirs in China. Remote Sensing, 12(5), 770. doi.org/10.3390/rs12050770
    • Salem, J.A., C. He, N. Sawruk, V. Litvinovich (2020). Thermally Driven Failure of ND:YVO4 Amplifier Crystals. Jouranl of the European Ceramic Society, https://doi.org/10.1016/j.jeurceramsoc.2020.02.057
    • Zhu, X., C. Wang, S. Nie, F. Pan, X. Xi, Z. Hu (2020).  Mapping forest height using photon-counting LiDAR data and Landsat 8 OLI data: A case study in Virginia and North Carolina, USA. Ecological Indicators, 114. https://doi.org/10.1016/j.ecolind.2020.106287
    • Kwok, R., S. Kacimi, M.A. Webster, N.T. Kurtz, A.A. Petty (2020). Arctic Snow Depth and Sea Ice Thickness from ICESat-2 and CryoSat-2 Freeboards: A First Examination. Journal of Geophysical Research: Oceans, 125. https://doi.org/10.1029/2019JC016008
    • Vernimmen, R, A. Hooijer, R. Akmalia, N, Fitranatanegara, D. Mulyadi, A. Yuherda, H. Andreas, S. Page (2020). Mapping deep peat carbon stock from a LiDAR based DTM and field measurements, with application to eastern SumatraCarbon Balance & Management, 15(4). https://doi.org/10.1186/s13021-020-00139-2
    • Duncanson, L., A. Neuenschwander, S. Hancock, N, Thomas, T. Fatoyinbo, M. Simard, C.A. Silva, J. Armston, S. Luthcke, M. Hofton, J.R. Kellner, R. Dubayah (2020). Biomass estimation from simulated GEDI, ICESat-2 and NISAR across environmental gradients in Sonoma County, California. Remote Sensing of the Environment, 242(1). https://doi.org/10.1016/j.rse.2020.111779
    • Dandabathula, G., M. Verma, S.R. Sitiraju (2020). Evaluation of best-fit terrain elevation of ICESat-2 ATL08 using DPGS surveyed points. Journal of Applied Geodesy. https://doi.org/10.1515/jag-2020-0003
    • Petty, A. A., N. T. Kurtz, R. Kwok, T. Markus, T. A. Neumann (2020), Winter Arctic sea ice thickness from ICESat-2 freeboardsJ. Geophys. Res. Oceanshttps://doi.org/10.1029/2019jc015764 
    • Z. Zhang, Y. Ma, S. Li, P. Zhao, Y. Xiang, X. Liu, W. Zhang (2020). Ranging performance model considerng the pulse pileup effect for PMT-based photon-counting lidars. Optics Express, 28(9). https://doi.org/10.1364/OE.386107 
    • Smith, B.E., H.A. Fricker, A. Gardner, B. Medley, J. Nilsson, F.S. Paolo, N. Holschuh, S. Adusumilli, K.M. Brunt, B. Castho, K. Harbeck, T. Markus, T. Neumann, M.R. Siegfried, H.J. Zwally (2020). Pervasive ice sheet mass loss reflects competing ocean and atmosphere processes.  Science, 368(6496), 1239-1242.  https://doi.org/10.1126/science.aaz5845
    • Lu, X., Y. Hu, Y. Yang, P. Bontempi, A. Omar, R. Baize (2020). Antarctic spring ice-edge blooms observed from space by ICESat-2. Remote Sensing of the Environment. https://doi.org/10.1016/j.rse.2020.111827
    • Albright, A. and C. Glennie (2020).  Nearshore Bathymetry from Fusion Sentinel-2 and ICESat-2 Observations. IEEE Geosciences and Remote Sensing Letters. https://doi.org/10.1109/LGRS.2020.2987778
    • Zhang, Z., N. Xu, Y. Ma, X. Liu, W. Zhang, S. Li (2020). Land and snow-covered area classification method based on the background noise for satellite photon-counting laser altimeters. Optics Express, 28(11). https://doi.org/10.1364/OE.392904
    • Li, W., Z. Niu, R. Shang, Y. Qin, L. Wang, H. Chen (2020). High-resolution mapping of forest canopy height using machine learning by coupling ICESat-2 LiDAR with Sentinel-1, Sentinel-2, and Landsat-8 data. International Journal of Applied Earth Observation and Geoinformation, 92. https://doi.org/10.1016/j.jag.2020.102163
    • Dandabathula, G., M. Verma, P. Satyanarayana, S. S. Rao (2020). Evaluation of ICEsat-2 ATL08 Data Product: Performance Assessment in Inland Water. European Journal of Environment and Earth Science, 1(3). https://doi.org/10.24018/ejgeo.2020.1.3.15
    • Xing, Y., J, Huang, A. Gruen, L. Qin (2020). Assessing the Performance of ICESat-2/ATLAS Multi-Channel Photon Data for Estimating Ground Topography in Forested Terrain. Remote Sensing, 12(2084). https://doi.org/10.3390/rs12132084.
    • Zhu, X., S. Nie, C. Wang, X. Xi, J. Wang, D. Li, H. Zhou (2020). A Noise Removal Algorithm Based on OPTICS for Photon-Counting LiDAR Data. IEEE Geoscience and Remote Sensing Letters. https://doi.org/10.1109/LGRS.2020.3003191.
    • Ma, Y., N, Xu, Z. Liu, B. Yang, F. Yang, X. Wang, S. Li (2020). Satellite-derived bathymetry using the ICESat-2 lidar and Sentinel-2 imagery datasets. Remote Sensing of the Environment, 250(1). https://doi.org/10.1016/j.rse.2020.112047
    • Dandabathula, G., S. Rao (2020). Validation of ICESat-2 Surface Water Level Product ATL13 with Near Real Time Gauge Data. Hydrology, 8(2). https://doi.org/10.11648/j.hyd.20200802.11
    • McGarry, J., C. C. Carabajal, J. L. Saba, A. R. Reese, S. T. Holland, S. P. Palm, J.A. Swinski, J. Golder, P. Liiva (2020). ICESat-2/ATLAS Onboard Flight Science Receiver Algorithms: Purpose, Process, and Performance. Earth and Space Science. https://doi.org/10.1002/essoar.10502982.
    • Carabajal, C.C., J.P. Boy (2020). ICESat-2 Altimetry as Geodetic Control. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, volume XLIII-B3-2020. https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-1299-2020.
    • Narine, L.L., S. Popescu, L. Malambo (2020). Using ICESat-2 to Estimate and Map Forest Aboveground Biomass: A First Example. Remote Sensing, 12(11), 1824. https://doi.org/10.3390/rs12111824
    • Xu, N., Y. Ma (2020). A Method to Derive Bathymetry for Dynamic Water Bodies Using ICESat-2 and GSWD Data Sets. IEEE Geoscience and Remote Sensing Letters. https://doi.org/10.1109/LGRS.2020.3019396
    • Fassoni-Andrade, A.C., R.C. Dias de Paiva, C. de Morales Rudorff, C. Barbosa, E. de Morales Novo (2020). High-resolution mapping of floodplain topography from space: A case student in the Amazon. Remote Sensing of the Environment, 251(2020), https://doi.org/10.1016/j.rse.2020.112065
    • Sun, T., J. Qi, H. Huang (2020). Discovering forest height changes based on spaceborne lidar data of ICESat-1 in 2005 and ICESat-2 in 2019: a case study in the Beijing-Tianjin-Hebei region of China. Forest Ecosystems, 7(53). https://doi.org/10.1186/s40663-020-00265-w
    • Steinvall, O., M. Bjorks (2020). Water optical properties in Scandinavian waters and airborne optical sensing. Proceedings of SPIE Volume 11538, Electro-Optical Remote Sensing XIV. https://doi.org/10.1117/12.2571124
    • Neuenschwander, A., E. Guenther, J.C. White, L. Duncanson, P. Montesano (2020). Validation of ICESat-2 terrain and canopy heights in boreal forests. Remote Sensing of Environment, 251 (2020; 112110). https://doi.org/10.1016/j.rse.2020.112110
    • Shen, X., C. Ke, Q. Wang, J. Zhang, L. Shi, X. Zhang (2020). Assessment of Arctic Sea Ice Thickness Estimates from ICESat-2 Using IceBird Measurements. IEEE Transactions on Geoscience and Remote Sensing. https://doi.org/10.1109/TGRS.2020.3022945.
    • Malambo, L. and S. Popescu (2020). PhotonLabeler: An Inter-Disciplinary Platform for Visual Interpretation and Labeling of ICESat-2 Geolocated Photon Data. Remote Sensing, 12. https://doi.org/10.3390/12193168
    • Li, T., G.J. Dawson, S.J. Chuter, J.L. Bamber (2020). Mapping the grounding zone of Larsen C Ice Shelf, Antarctica from ICESat-2 laser altimetry. The Cryosphere, 14(3629-3643). https://doi.org/10.5194/tc-14-3629-202
    • Magruder, L.A., K.M. Brunt, M. Alonzo (2020). Early ICESat-2 on-orbit Geolocation Validation Using Ground-Based Corner Cube Retro-Reflectors. Remote Sensing, 12(21), 3653. https://doi.org/10.3390/rs12213653
    • Fair, Z., M. Flanner, K.M. Brunt, H.A. Fricker, A. Gardner (2020). Using ICESat-2 and Operation IceBridge altimetry for supraglacial lake retrieval. The Cryosphere, 14(4253-4263). https://doi.org/10.5194/tc-14-4253-2020
    • Kacimi, S. and R. Kwok (2020). The Antarctic sea ice cover from ICESat-2 and CryoSat-2: freeboard, snow depth and ice thickness. The Cryosphere, 14(4453-4474). https://doi.org/10.5194/tc-14-4453-2020
    • Xu, N., Y. Ma, W. Zhang, X.H. Wang, F. Yang, D. Su (2020). Monitoring Annual Changes of Lake Water Levels and Volumes over 1974-2018 Using Landsat Imagery and ICESat-2 Data. Remote Sensing, 12(4004). https://doi.org/10.3390/rs12234004
    • Herzfeld, U., T. Trantow, M. Lawson, J. Hans, G. Medley (2020). Surface heights and crevasse morphologies of surging and fast-moving glaciers from ICESat-2 laser altimeter data: Application of the density-dimension algorithm (DDA-ice) and evaluation using airborne altimeter and Planet SkySat data. Science of Remote Sensing. https://doi.org/10.1016/j.srs.2020.100013
    • Silva, C.A., L. Duncanson, S. Hancock, A. Neuenschwander, N. Thomas, M. Hofton, L. Fatoyinbo, M. Simard, C.Z. Marshak, J. Armston, S. Luthcke, R. Dubayah (2020). Fusing simulated GEDI, ICESat-2 and NISAR data for regional aboveground biomass mapping. Remote Sensing of the Environment, 253. https://doi.org/10.1016/j.rse.2020.112234
    • Berninger, A. and F. Siegert (2020). The Potential of ICESat-2 to Identify Carbon-Rich Peatlands in Indonesia. Remote Sensing, 21(4175). https://doi.org/10.3390/rs1224417
    • Shen, X., C.Q. Ke, X. Yu, Y. Cai and Y. Fan (2020). Evaluation of Ice, Cloud, And Land Elevation Satellite-2 (ICESat-2) land ice surface heights using Airborne Topographic Mapper (ATM) data in Antarctica. International Journal of Remote Sensing, 42:7, 2556-2573, https://doi.org/10.1080/01431161.2020.1856962


  • Zhang, G., T. Yao, H. Xie, K. Yang, L. Zhu, C.K. Shum, T. Bolch, S. Yi, S. Allen, L. Jiang, W. Chen, and C. Ke (2020). Response of Tibetan Plateau lakes to climate change: Trends, patterns, and mechanisms, Earth-Science Reviews, Volume 208, 2020,103269, ISSN 0012-8252, https://doi.org/10.1016/j.earscirev.2020.103269.



    • Brunt, KM, Neumann, TA, & Larsen, CF (2019). Assessment of altimetry using ground-based GPS data from the 88S Traverse, Antarctica, in support of ICESat-2. The Cryosphere, 13(2), 1–12, doi:10.5194/tc-13-579-2019.
    • Crawford, CJ, van den Bosch, J, Brunt, KM, Hom, MG, Cooper, JW, Harding, DJ, Butler, JJ, Dabney, PW, Neumann, TA, Cleckner, CS, & Markus, T (2019). Radiometric calibration of a non-imaging airborne spectrometer to measure the Greenland Ice Sheet surface. Atmospheric Measurement Techniques, 12(3), 1913–1933, doi:10.5194/amt-12-1913-2019.
    • Narine, L. L., Popescu, S., Neuenshwander, A., Zhou, T., Srinivasan, S., Harbeck, K., 2019. Estimating aboveground biomass and forest canopy cover with simulated ICESat-2 data. Remote Sensing of Environment 224 1-11. https://doi.org/10.1016/j.rse.2019.01.037. Journal Article/Letter
    • Brown, M., E., Escobar, V., M., 2019. NASA’s Early Adopter Program Links Satellite Data to Decision Making.  Remote Sensing of Environment 11, 406. doi:10.3390/rs11040406. Journal Article/Letter
    • Li, Y., H. Gao, M. Jasinski, S. Zhang, and J. Stoll, 2019: Deriving High-Resolution Reservoir Bathymetry from ICESat-2 Prototype Photon-counting Lidar and Landsat Imagery. Trans. on Geoscience and Remote Sensing, in press, DOI:10.1109/TGRS.2019.2917012.
    • Parrish, C. E., L. A. Magruder, A. Neuenschwander, N. Forfinski-Sarkozi, M. Alonzo, M. Jasinski.  Validation of ICESat-2 ATLAS Bathymetry and Analysis of ATLAS's Bathymetric Mapping Performance. Remote Sensing. 2019, 11, 1634, https://doi.org/10.3390/rs11141634.
    • Neuenschwaner, A. and L. Magruder. Canopy and Terrain height retrievals with ICESat-2: A First Look.  Remote Sensing. 2019, 11, 1721. https://www.mdpi.com/2072-4292/11/14/1721/pdf.
    • Neumann, T., A. Martino, T. Markus, S. Bae, M. Bock, A. Brenner, K.M. Brunt, J. Cavanaugh, S. Fernandes, D. Hancock, K. Harbeck, J. Lee, N, Kurtz, P. Luers, S. Luthcke, L. Magruder, T. Pennington, L. Ramos-Izquierdo, T. Rebold, J. Skoog, and T. Thomas. The Ice, Cloud and Land Elevation Satellite-2 Mission: A Global Geolocated Photon Product.  Remote Sensing of the Environment.  2019, 233.  https://doi.org/10.1016/j.rse.2019.111325.
    • Smith, B.E., H.A. Fricker, N. Holschuh, A. Gardner, S. Adusumilli, K.M. Brunt, B. Csatho, K. Harbeck, A. Huth, T. Neumann, J. Nilsson, M. Siegfried.  Land ice height-retrieval algorithm for NASA's ICESat-2 photon counting laser altimeter.  Remote Sensing of the Environment. 2019, 233.  https://doi.org/10.1016/j.rse.2019.111352
    • Kwok, R., T. Markus, N. Kurtz, A. Petty, T. Neumann, S.L. Farrell, G.F. Cunningham, D. Hancock, A. Ivanoff, J.T. Wimert.  Surface height and sea ice freeboard of the Arctic Ocean from ICESat-2: Characteristics and early results.  Journal of Geophysical Research Oceans, 2019. https://doi.org/10.1029/2019JC015486
    • Kwok, R., S. Kacimi, T. Markus, N. Kurtz, M Studinger, J.G. Sonntag, S.S. Manizade, L. Boisvert, J. Harbeck.  ICESat-2 surface height and sea-ice freeboard assessed with ATM lidar acquisitions from Operation IceBridgeGeophysical Research Letters, 2019. https://doi.org/10.1029/2019GL084976
    • Martino, A.J., T. Neumann, N. Kurtz, D. Maclennan.  ICESat-2 mission overview and early performance. Proc. SPIE 11151, Sensors, Systems, and Next-Generation Satellites XXIII, 111510C.  https://doi.org/10.1117/12.2534938
    • Brunt, K. M., Neumann, T. A., & Smith, B. E. (2019). Assessment of ICESat‐2 ice sheet surface heights, based on comparisons over the interior of the Antarctic ice sheet. Geophysical Research Letters, 46, https://doi.org/10.1029/2019GL084886
    • Wang, C., X. Zhu, S. Nie, X. Xi, D. Li, W. Zheng, & S. Chen. (2019) Ground elevation accuracy verification of ICESat-2 data: a case study in Alaska, USA. Optics Express, Vol. 27, Is. 26, https://doi.org/10.1364/OE.27.038168
    • Klotz, B.W., A. Neuenschwander, L.A. Magruder. (2019) High-Resolution Ocean Wave and Wind Characteristics Determined by the ICESat-2 Land Surface Algorithm. Geophysical Research Letters, Vol. 47, Is.1, https://doi.org/10.1029/2019GL085907
    • Brêda, J. P. L. F., R. C. D. Paiva, J. M. Bravo, O. A. Passaia, D. M. Moreira (2019). Assimilation of Satellite Altimetry Data for Effective River Bathymetry. Water Resources Research, Vol. 55, Is. 9, https://doi.org/10.1029/2018WR024010
    • Csatho, B., A.F. Schenk, T. Neumann (2019). Ice Sheet Elevation Mapping and Change Detection with the Ice, Cloud and Land Elevation Satellite-2. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W13. https://doi.org/10.5194/isprs-archives-XLII-2-W13-1747-2019.
    • Lu, X., Y. Hu, and Y. Yang (2019), Ocean Subsurface Study from ICESat-2 Mission. 2019 Photonics & Electromagnetics Research Symposium - Fall (PIERS - Fall), pp. 910-918, doi: 10.1109/PIERS-Fall48861.2019.9021802.


    • Zhang, G., W. Chen, and H. Xie (2019). Tibetan Plateau's Lake Level and Volume Changes From NASA's ICESat/ICESat‐2 and Landsat Missions, Geophysical research letters, ISSN: 0094-8276, 2019, Volume: 46 Issue: 22, Page: 13107-13118, DOI: 10.1029/2019GL085032.



    • Neuenschwander, A., Pitts, K., 2018. "The ATL08 land and vegetation product for the ICESat-2 Mission," Remote Sensing of Environment 221 247-259. https://doi.org/10.1016/j.rse.2018.11.005. Journal Article/Letter
    • Kwok, R., 2018. “Arctic sea ice thickness, volume, and multiyear ice coverage: losses and coupled variability (1958–2018),” Environmental Research Letters, Vol 13, No. 10 (2018), doi.org/10.1088/1748-9326/aae3ec. Journal Article/Letter
    • Morison J., Kwok R., Dickinson S., Morison D., Peralta-Ferriz C., Andersen R., 2018. "Sea State Bias of ICESat in the Subarctic,"  IEEE Geoscience and Remote Sensing Letters 15 (2):  1144-1148. DOI: 10.1109/LGRS.2018.2834362. Journal Article/Letter
    • Popescu, S.C., Zhou, T., Nelson, R., Neuenschwander, A., Sheridan, R., Narine, L., Walsh, K. M., 2018. "Photon counting LiDAR: an adaptive ground and canopy height retrieval algorithm for ICESat-2 data," Remote Sensing of the Environment 208: 154-170. doi.org/10.1016/j.rse.2018.02.019. Journal Article/Letter
    • Magruder, L.A., Brunt, K. M., 2018. "Performance analysis of airborne photon-counting lidar data in preparation of ICESat-2​," EEE Transactions on Geoscience and Remote SensingPP(99), 1-8  10.1109/TGRS.2017.2786659.  Journal Article/Letter
    • Casasanto, V. A., Campbell, B.,  Manrique, G. A., Ramsayer, K., Markus, T., Neumann, T.,  2018. “Lasers, Penguins, and Polar Bears: Novel Outreach and Education Approaches for NASA's ICESat-2 Mission,” Acta Astronautica, 148: 396-402. doi.org/10.1016/j.actaastro.2018.04.011. Journal Article/Letter
    • Smith, B.E., A. Gardner, A. Schneider, M. Flanner (2020). Modeling biases in laser-altimetry measurements caused by scattering of green light in snow. Remote Sensing of the Environment, 215. https://doi.org/10.1016/j.rse.2018.06.012



    • Webb, C. E., Bae, S., "Precision Attitude Determination with an Extended Kalman Filter to Measure Ice-Sheet Elevation,"Journal of Guidance, Control, and Dynamics, Vol. 40, No. 9 (2017), pp. 2335-2340doi.org/10.2514/1.G002715. Journal Article/Letter

    • Kwok, R., Markus, T., 2017. “Potential basin-scale estimates of Arctic snow depth with sea ice freeboards from CryoSat-2 and ICESat-2: An exploratory analysis,” Advances in Space Research, 10.1016/j.asr.2017.09.007. Journal Article/Letter
    • Markus, T., Neumann, T., Martino, A., Abdalati, W., Brunt, K., Csatho, B., Farrell, S., Fricker, H., Gardner, A., Harding, D., Jasinski, M., Kwok, R., Magruder, L., Lubin, D., Luthcke, S., Morison, J., Nelson, R., Neuenschwander, A, Palm, S, Popescu, S, Shum., C, K., Schutz, B. E., Smith, B., Yang, Y. K., Zwally, J., 2017. “The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation,” Remote Sensing of Environment, 190: 260-273, 10.1016/j.rse.2016.12.029. Journal Article/Letter
      Download PDF
    • Brunt, K. M.,  Hawley, R. L.,  Lutz, E. R,. Studinger, M., Sonntag, J. G.,  Hofton, M. A., Andrews, L. C., Neumann, T. A., 2017. "Assessment of NASA Airborne Laser Altimetry Data Using Ground-Based GPS Data Near Summit Station," The Cryosphere, 11 (2): 681-692. 10.5194/tc-11-681-2017. Journal Article/Letter
    • Brunt, KM, Cook, W, De Marco, E, Reed, D, Neumann, T, & Markus, T (2017). MABEL Alaska 2014; Flight Report. NASA Technical Memorandum, TM–2017-219019. Download PDF

    • Cook, W, Brunt, KM, De Marco, E, Reed, D, Neumann, T, & Markus, T (2017). MABEL Iceland 2012; Flight Report. NASA Technical Memorandum, TM–2017-219023. Download PDF



    • Forfinski-Sarkozi, N. A., Parrish, C. E., 2016. “Analysis of MABEL Bathymetry in Keweenaw Bay and Implications for ICESat-2 ATLAS,” Remote Sens., 8(9), 772, doi:10.3390/rs8090772. Journal Article/Letter
    • Brunt, K.M., Neumann, T.A., Amundson, J.K., Kavanaugh, J. L., Moussavi, M. S., Walsh, K. M., Cook, W.B., Markus, T., 2016. “MABEL photon-counting laser altimetry data in Alaska for ICESat-2 simulations and development,”  The Cryosphere, 10(4), 1707–1719 doi: 10.5194/tc-10-1707-2016. Journal Article/Letter
    • Glenn, N. F., Neuenschwander, A., Vierling, L. A., Spaete, L., Li, A., Shinneman, D. J., Pilliod, D. S., Arkle, R. S., Mcllroy, S. K., 2016. “Landsat 8 and ICESat-2: Performance and potential synergies for quantifying dryland ecosystem vegetation cover and biomass,”  Remote Sensing of Environment, 10(4), 1707–1719 doi.org/10.1016/j.rse.2016.02.039. Journal Article/Letter
    • Jasinski, M.; Stoll, J.; Cook, W.; Ondrusek, M.; Stengel, E., and Brunt, K., 2016.  “Inland and near-shore water profiles derived from the high-altitude Multiple Altimeter Beam Experimental Lidar (MABEL).” Brock, J.C.; Gesch, D.B.; Parrish, C.E.; Rogers, J.N., and Wright, C.W. (eds.), Advances in Topobathymetric Mapping, Models, and Applications. Journal of Coastal Research, Special Issue, No. 76, pp. 44–55. Coconut Creek (Florida), ISSN 0749-0208. doi:10.2112/SI76-005. Journal Article
    • Neuenschwander, A. L., Magruder, L. A., 2016. “The Potential Impact of Vertical Sampling Uncertainty on ICESat-2/ATLAS Terrain and Canopy Height Retrievals for Multiple Ecosystems,” Remote Sensing, doi:10.3390/rs8121039 Journal Article/Letter
    • Casasanto, V. A., Campbell, B.,  Manrique G. A., Ramsayer, K., Markus, T., Neumann, T.,  2016. “Lasers, Penguins, and Polar Bears: Novel Outreach and Education Approaches for NASA'S ICESAT-2 Mission,” 67th International Astronautical Congress (IAC), Guadalajara, Mexico, 26-30 September 2016. IAC-16,E1,7,10,x35733

       Download PDF

    • Kwok, R., Cunningham, G. F., Hoffmann, J., Markus, T.,  2016. “Testing the ice-water discrimination and freeboard retrieval algorithms for the ICESat-2 mission,” Remote Sens. Environ., 183, 13-25. 10.1016/j.rse.2016.05.011. Journal Article/Letter



    • Leigh, H. W., L. A. Magruder, C. C. Carabajal, J. L. Saba and J. F. McGarry, (2015). Development of Onboard Digital Elevation and Relief Databases for ICESat-2, IEEE Transactions on Geoscience and Remote Sensing, vol. 53, no. 4, pp. 2011-2020, April 2015, doi: 10.1109/TGRS.2014.2352277.

    • Farrell, S. K., Brunt, K.M., Ruth, J. M., Kuhn, J. M., Connor, L. N., Walsh, K. M., 2015. Sea Ice Freeboard Retrieval using Digital Photon-counting Laser Altimetry Ann. Glaciol., 56(69), 167–174. 10.3189/2015AoG69A686. Journal Article/Letter
    • Brunt, KM, Neumann, T, & Markus, T (2015). SIMPL/AVIRIS-NG Greenland 2015; Flight Report. NASA Technical Memorandum, TM-2015-217544. Download PDF




    • Brunt, K. M., Neumann, T. A., Walsh, K. M., Markus, T., 2014. "Determination of Local Slope on the Greenland Ice Sheet Using a Multibeam Photon-Counting Lidar in Preparation for the ICESat-2 Mission," IEEE Geosci. Remote Sensing Lett., 11 (5): 935-939. 10.1109/LGRS.2013.2282217.  Journal Article/Letter

    • Moussavi, M.S., Abdalati, W., Scambos, T., Neuenschwander, A., 2014. "Applicability of an Automatic Surface Detection Approach to Micro-pulse Photon-counting Lidar Altimetry Data: Implications for Canopy Height Retrieval from Future ICESat-2 Data," Int. J. Remote Sens., 35, 5263-5279. 10.1080/01431161.2014.939780. Journal Article/Letter
    • Kwok, R., Markus, T., Morison,, J., Palm, S. P., Neumann, T. A., Brunt, K. M., Cook, W. B., Hancock, D. W., Cunningham, G. F., 2014. “Profiling sea ice with a Multiple Altimeter Beam Experimental Lidar (MABEL),”  Journal of Atmospheric and Oceanic Technology, 31 (5): 1151-1168. 10.1175/JTECH-D-13-00120.1. Journal Article/Letter

    • Herzfeld, U., McDonald, B., Wallin, B., Neumann, T., Markus, T., Brenner, A., Field, C.,  2014. "Algorithm for Detection of Ground and Canopy Cover in Micropulse Photon-Counting Lidar Altimeter Data in Preparation for the ICESat-2 Mission," IEEE Transactions on Geoscience and Remote Sensing, 52 (4): 2109 - 2125. 10.1109/TGRS.2013.2258350. Journal Article/Letter



    • Awadallah, M., Ghannam, S., Abbott, A. L., Ghanem, A.,  2013. "Active Contour Models for Extracting Ground and Forest Canopy Curves from Discrete Laser Altimeter Data," Proceedings: 13th International Conference on LiDAR Applications for Assessing Forest Ecosystems (SilviLaser 2013), Beijing, China, Oct. 2013, pp. 129-136.
    • Awadallah, M., Abbott, A. L., Thomas, V., Wynne, R. H., Nelson, R., 2013. ​"Estimating Forest Canopy Height and Biophysical Parameters using Photon-counting Laser Altimetry," Proceedings: 13th International Conference on LiDAR Applications for Assessing Forest Ecosystems (SilviLaser 2013), Beijing, China, Oct. 2013, pp. 137-144. 
    • McGill, M., Markus, T., Scott, V. S., Neumann, T.A.,  2013. "The Multiple Altimeter Beam Experimental Lidar (MABEL), an airborne simulator for the ICESat-2 mission," Journal of Atmospheric and Oceanic Technology.  10.1175/JTECH-D-12-00076.1. Journal Article/Letter



    • Farrell, S. L., Markus, T., Kwok, R., Connor L., 2011. "Laser altimetry sampling strategies over sea ice," Annals of Glaciology, 52(57), 2011. 10.3189/172756411795931660. Journal Article/Letter



    • Yua, A. W., Stephen, M. A., Li, S. X., Shaw, G. B., Seas, A., Dowdye, E., Troupaki, E., Liiva, P., Poulios, D., Mascetti, K.,  2010. "Space Laser Transmitter Development for ICESat-2 Mission," Proc. of SPIE, Vol. 7578 757809, Feb 2010. 10.1117/12.843342.Journal Article/ Letter

    • Abdalati, W., Zwally, J. H., Bindschadler, R., Csatho, B., Farrell, S. L., Fricker, H. A., Harding, D., Kwok, R., Lefsky, M., Markus, T., Marshak, A., Neumann, T., Palm, S., Schutz, B., Smith, B., Spinhirne, J., Webb, C.,  2010. "The ICESat-2 Laser Altimetry Mission," Proceedings of the IEEE, Vol. 98, No. 5, pp. 735-751, May 2010. 10.1109/JPROC.2009.2034765. Journal Article/Letter

Page URL:
Share on Social Media: