• Wang, Y., D. Long, and X. Li (2023). High-Temporal-Resolution Monitoring of Reservoir Water Storage of the Lancang-Mekong River. Remote Sensing of Environment. Vol. 292. https://doi.org/10.1016/j.rse.2023.113575


  • Purslow, M., S. Hancock, A. Neuenschwander, J. Armston, and L. Duncanson (2023). Can ICESat-2 Estimate Stand-Level Plant Structural Traits? Validation of an ICESat-2 Simulator. Science of Remote Sensing. Vol. 7. https://doi.org/10.1016/j.srs.2023.100086


  • Feng, T., L. Duncanson, P. Montesano, S. Hancock, D. Minor, E. Guenther, and A. Neuenschwander (2023). A Systematic Evaluation of Multi-Resolution ICESat-2 ATL08 Terrain and Canopy Heights in Boreal Forests. Remote Sensing of Environment. Vol. 291. https://doi.org/10.1016/j.rse.2023.113570


  • Cobb, A.R., R. Dommain, R. S. Sukri, F. Metali, B. Bookhagen, C. F. Harvey, and H. Tang (2023). Improved terrain estimation from spaceborne lidar in tropical peatlands using spatial filtering. Science of Remote Sensing. Vol. 7. https://doi.org/10.1016/j.srs.2022.100074


  • Chang, R., R. Huang, L. Jiang, Z. Dong, and H. Wang (2023). A Robust Density Estimation Method for Glacier-Height Retrieval from ICESat-2 Photon-Counting Data. IEEE Transactions on Geoscience and Remote Sensing. https://doi.org/10.1109/TGRS.2023.3277008


  • Zhang, Y., N. Chao, F. Li, L. Yue, S. Wang, G. Chen, Z. Wang, N. Yu, R. Sun, and G. Ouyang (2023). Reconstructing Long-Term Arctic Sea Ice Freeboard, Thickness, and Volume Changes from Envisat, CryoSat-2, and ICESat-2. Journal of Marine Science and Engineering. Vol. 11, Issue 5. https://doi.org/10.3390/jmse11050979


  • Yang, H., B. Qiao, S. Huang, Y. Fu, and H. Guo (2023). Fitting Profile Water Depth to Improve the Accuracy of Lake Depth Inversion without Bathymetric Data Based on ICESat-2 and Sentinel-2 Data. International Journal of Applied Earth Observation and Geoinformation. Vol.119. https://doi.org/10.1016/j.jag.2023.103310


  • Huang, Y., H. Yang, S. Tang, Y. Liu, and Y. Liu (2023). An Appraisal of Atmospheric Correction and Inversion Algorithms for Mapping High-Resolution Bathymetry over Coral Reef Waters. IEEE Transactions on Geoscience and Remote Sensing. https://doi.org/10.1109/TGRS.2023.3271632



  • Fan, Y., C. Ke, X. Shen, Y. Xiao, S. J. Livingstone, and A. J. Sole (2023). Subglacial Lake Activity beneath the Ablation Zone of the Greenland Ice Sheet. The Cryosphere. Vol.17, Issue 4. https://doi.org/10.5194/tc-17-1775-2023


  • Lao, J., C. Wang, S. Nie, X. Xi, H. Long, B. Feng, and Z. Wang (2023). A New Denoising Method for Photon-Counting LiDAR Data with Different Surface Types and Observation Conditions. International Journal of Digital Earth. Vol.16, Issue 1. https://doi.org/10.1080/17538947.2023.2203952


  • Rodda, S. R., R. R. Nidamanuri, R. Fararoda, T. Mayamanikandan, and G. Rajashekar (2023). Evaluation of Height Metrics and Above-Ground Biomass Density from GEDI and ICESat-2 Over Indian Tropical Dry Forests Using Airborne LiDAR Data. Journal of the Indian Society of Remote Sensing. https://doi.org/10.1007/s12524-023-01693-1


  • Otosaka, I. N., A. Shepherd, E. R. Ivins, N. Schlegel, C. Amory, M. R. van den Broeke, M. Horwath, et al. (2023). Mass Balance of the Greenland and Antarctic Ice Sheets from 1992 to 2020. Earth System Science Data. Vol.15, Issue 4. https://doi.org/10.5194/essd-15-1597-2023


  • Li, Y., H. Fu, J. Zhu, L. Wang, R. Zhao, and C. Wang (2023). A Photon Cloud Filtering Method in Forested Areas Considering the Density Difference Between Canopy Photons and Ground Photons. IEEE Transactions on Geoscience and Remote Sensing. Vol. 61. https://doi.org/10.1109/TGRS.2023.3267823


  • Zhong, J., X. Liu, X. Shen, and L. Jiang (2023). A Robust Algorithm for Photon Denoising and Bathymetric Estimation Based on ICESat-2 Data. Remote Sensing. Vol. 15, Issue 8. https://doi.org/10.3390/rs15082051


  • Scheick, J., W. J. Leong, K. Bisson, A. Arendt, S. Bhushan, Z. Fair, N. R. Hagen, et al (2023). Icepyx: Querying, Obtaining, Analyzing, and Manipulating ICESat-2 Datasets. Journal of Open Source Software. https://doi.org/10.21105/joss.04912


  • Zhang, T., and D. Liu (2023). Improving ICESat ‐2‐based Boreal Forest Height Estimation by a Multivariate Sample Quality Control Approach. Methods in Ecology and Evolution. https://doi.org/10.1111/2041-210X.14112


  • Ma, L., G. Hurtt, H. Tang, R. Lamb, A. Lister, L. Chini, R. Dubayah, et al. (2023). Spatial Heterogeneity of Global Forest Aboveground Carbon Stocks and Fluxes Constrained by Spaceborne Lidar Data and Mechanistic Modeling. Global Change Biology. https://doi.org/10.1111/gcb.16682


  • Sandven, S., G. Spreen, G. Heygster, F. Girard-Ardhuin, S. L. Farrell, W. Dierking, and R. A. Allard (2023). Sea Ice Remote Sensing—Recent Developments in Methods and Climate Data Sets. Surveys in Geophysics. https://doi.org/10.1007/s10712-023-09781-0


  • He, L., Y. Pang, Z. Zhang, X. Liang, and B. Chen (2023). ICESat-2 Data Classification and Estimation of Terrain Height and Canopy Height. International Journal of Applied Earth Observation and Geoinformation. Vol. 118. https://doi.org/10.1016/j.jag.2023.103233


  • Zhang, G., S. Xing, Q. Xu, F. Zhang, M. Dai, and D. Wang (2023). An Automatic Algorithm to Extract Nearshore Bathymetric Photons Using Pre-Pruning Quadtree Isolation for ICESat-2 Data. IEEE Geoscience and Remote Sensing Letters. Vol. 20. https://doi.org/10.1109/LGRS.2023.3263469


  • Akturk, E., S. C. Popescu, and L. Malambo (2023). ICESat-2 for Canopy Cover Estimation at Large-Scale on a Cloud-Based Platform. Sensors. Vol. 23, Issue 7. https://doi.org/10.3390/s23073394


  • Xie, T., R. Kong, A. Nurunnabi, S. Bai, and X. Zhang (2023). Machine Learning Method-Based Inversion of Shallow Bathymetric Maps Using ICESat-2 ATL03 Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. https://doi.org/10.1109/JSTARS.2023.3260831


  • Amante, C. J., M. Love, K. Carignan, M. G. Sutherland, M. MacFerrin, and E. Lim (2023). Continuously Updated Digital Elevation Models (CUDEMs) to Support Coastal Inundation Modeling. Remote Sensing. Vol. 15, Issue 6. https://doi.org/10.3390/rs15061702


  • Zhang, G., S. Xing, Q. Xu, P. Li, and D. Wang (2023). A Pre-Pruning Quadtree Isolation Method with Changing Threshold for ICESat-2 Bathymetric Photon Extraction. Remote Sensing. Vol. 15, Issue 6. https://doi.org/10.3390/rs15061629


  • Narine, L. L., S. C. Popescu, and L. Malambo (2023). A Methodological Framework for Mapping Canopy Cover Using ICESat-2 in the Southern USA. Remote Sensing. Vol. 15, Issue 6. https://doi.org/10.3390/rs15061548


  • Zhu, X., Z. Ren, S. Nie, G. Bao, G. Ha, M. Bai, and P. Liang (2023). DEM Generation from GF-7 Satellite Stereo Imagery Assisted by Space-Borne LiDAR and Its Application to Active Tectonics. Remote Sensing. Vol.15, Issue 6. https://doi.org/10.3390/rs15061480


  • Cabaj, A., P. J. Kushner, and A. A. Petty (2023). Automated calibration of a snow-on-sea-ice model. Earth and Space Science. Vol. 10, Issue 3. https://doi.org/10.1029/2022EA002655


  • Coppo Frias, M., S. Liu, X. Mo, K. Nielsen, H. Ranndal, L. Jiang, J. Ma, and P. Bauer-Gottwein (2023). River hydraulic modeling with ICESat-2 land and water surface elevation. Hydrology and Earth System Sciences. Vol. 27, Issue 5. https://doi.org/10.5194/hess-27-1011-2023


  • Wang, M., Y. Wei, and Y. Pi (2023). Geometric positioning integrating optical satellite stereo imagery and a global database of ICESat-2 laser control points: A framework and key technologies. Geo-spatial Information Science. https://doi.org/10.1080/10095020.2022.2159885


  • Li, T., G. J. Dawson, S. J. Chuter, and J. L. Bamber (2023). Grounding line retreat and tide-modulated ocean channels at Moscow University and Totten Glacier ice shelves, East Antarctica. The Cryosphere. Vol. 17, Issue 2. https://doi.org/10.5194/tc-17-1003-2023


  • Zhao, Y., B. Wu, Q. Li, L. Yang, H. Fan, J. Wu, and B. Yu (2023). Combining ICESat-2 photons and Google Earth Satellite images for building height extraction. International Journal of Applied Earth Observation and Geoinformation. Vol. 117. https://doi.org/10.1016/j.jag.2023.103213


  • Wang, B., Y. Ma, J. Zhang, H. Zhang, H. Zhu, Z. Leng, X. Zhang, and A. Cui (2023). A noise removal algorithm based on adaptive elevation difference thresholding for ICESat-2 photon-counting data. International Journal of Applied Earth Observation and Geoinformation. Vol. 117. https://doi.org/10.1016/j.jag.2023.103207


  • Li, B., H. Xie, X. Tong, S. Liu, Q. Xu, and Y. Sun (2023). Extracting accurate terrain in vegetated areas from ICESat-2 data. International Journal of Applied Earth Observation and Geoinformation. Vol. 117. https://doi.org/10.1016/j.jag.2023.103200


  • Qiao, G., X. Yuan, I. Florinsky, S. Popov, Y. He, and H. Li (2023). Topography reconstruction and evolution analysis of outlet glacier using data from unmanned aerial vehicles in Antarctica. International Journal of Applied Earth Observation and Geoinformation. Vol. 117. https://doi.org/10.1016/j.jag.2023.103186


  • Zheng, X., C. Hou, M. Huang, D. Ma, and M. Li (2023). A Density and Distance-Based Method for ICESat-2 Photon-Counting Data Denoising. IEEE Geoscience and Remote Sensing Letters. https://doi.org/10.1109/LGRS.2023.3249960


  • Luo, Y., S. Qi, K. Liao, S. Zhang, B. Hu, and Y. Tian (2023). Mapping the Forest Height by Fusion of ICESat-2 and Multi-Source Remote Sensing Imagery and Topographic Information: A Case Study in Jiangxi Province, China. Forests. Vol. 14, Issue 3. https://doi.org/10.3390/f14030454


  • Jiang, M., W. Zhong, K. Xu, and Y. Jia (2023). Estimation of Arctic Sea Ice Thickness from Chinese HY-2B Radar Altimetry Data. Remote Sensing. Vol. 15, Issue 5. https://doi.org/10.3390/rs15051180


  • Li, S., X. H. Wang, Y. Ma, and F. Yang (2023). Satellite-Derived Bathymetry with Sediment Classification Using ICESat-2 and Multispectral Imagery: Case Studies in the South China Sea and Australia. Remote Sensing. Vol. 15, Issue 4. https://doi.org/10.3390/rs15041026


  • Yang, J., Y. Ma, H. Zheng, Y. Gu, H. Zhou, and S. Li (2023). Analysis and Correction of Water Forward-Scattering-Induced Bathymetric Bias for Spaceborne Photon-Counting Lidar. Remote Sensing. Vol. 15, Issue 4. https://doi.org/10.3390/rs15040931


  • Guo, H., B. Nie, Y. Yuan, H. Yang, W. Dai, X. Wang, and B. Qiao (2023). Continuous Intra-Annual Changes of Lake Water Level and Water Storage from 2000 to 2018 on the Tibetan PlateauRemote Sensing. Vol. 15, Issue 4. https://doi.org/10.3390/rs15040893


  • Agca, M., and A. I. Daloglu (2023). Local Geoid height calculations with GNSS, airborne, and spaceborne Lidar data. The Egyptian Journal of Remote Sensing and Space Science. Vol. 26, Issue 1. https://doi.org/10.1016/j.ejrs.2022.12.009


  • Xi, L., Q. Shu, Y. Sun, J. Huang, and H. Song (2023). Carbon storage estimation of mountain forests based on deep learning and multisource remote sensing data. Journal of Applied Remote Sensing. Vol. 17, Issue 1. https://doi.org/10.1117/1.JRS.17.014510


  • Huang, X., F. Cheng, J. Wang, P. Duan and J. Wang (2023). Forest Canopy Height Extraction Method Based on ICESat-2/ATLAS Data. IEEE Transactions on Geoscience and Remote Sensing. Vol. 61. https://doi.org/10.1109/TGRS.2023.3240848


  • Chen, T., C. Song, P. Zhan, and C. Fan (2023). Densifying and Optimizing the Water Level Series for Large Lakes from Multi-Orbit ICESat-2 Observations. Remote Sensing. Vol 15, Issue 3. https://doi.org/10.3390/rs15030780



  • Feng, Y., L. Yang, P. Zhan, S. Luo, T. Chen, K. Liu and C. Song (2023). Synthesis of the ICESat/ICESat-2 and CryoSat-2 observations to reconstruct time series of lake level. International Journal of Digital Earth. Vol.16, Issue 1. https://doi.org/10.1080/17538947.2023.2166134


  • Lenzano, M. G., A. Rivera, M. Durand, P. Vacaflor, M. Carbonetti, E. Lannutti, M. Gende, and L. Lenzano (2023). Detection of Crustal Uplift Deformation in Response to Glacier Wastage in Southern Patagonia. Remote Sensing. Vol. 15, Issue 3. https://doi.org/10.3390/rs15030584


  • Zhou, H., Q. Zhang, Y. Ma, S. Li and Y. Chen (2023). Radiometric Correction Model and Land Cover Classification of Snow-Covered Terrains for ICESat-2 Photon-Counting Lidar. IEEE Transactions on Geoscience and Remote Sensing. Vol. 61. https://doi.org/10.1109/TGRS.2023.3237273


  • Zhang, G., S. Xing, Q. Xu, S. Guo, M. Gao, L. Chen, and D. Wang (2023). Automatic land-sea classification in a nearshore environment using satellite-based photon-counting LiDAR data. Optics Express. Vol. 31, Issue 2. https://doi.org/10.1364/OE.479449


  • Leng, Z., J. Zhang, Y. Ma, and J. Zhang (2023). ICESat-2 Bathymetric Signal Reconstruction Method Based on a Deep Learning Model with Active–Passive Data Fusion. Remote Sensing. Vol. 15, Issue 2. https://doi.org/10.3390/rs15020460


  • Shean, D., J. P. Swinski, B. Smith, T. Sutterley, S. Henderson, C. Ugarte, E. Lidwa, and T. Neumann (2023). SlideRule: Enabling rapid, scalable, open science for the NASA ICESat-2 mission and beyond. Journal of Open Source Software. https://doi.org/10.21105/joss.04982


  • Vernimmen, R., and A. Hooijer (2023). New LiDAR-based elevation model shows greatest increase in global coastal exposure to flooding to be caused by early-stage sea-level rise. Earth's Future. Vol. 11, Issue 1. https://doi.org/10.1029/2022EF002880


  • Brown, M. E., S. Delgado Arias, and M. Chesnes (2023). Review of ICESat and ICESat-2 literature to enhance applications discovery. Remote Sensing Applications: Society and Environment. Vol. 29. https://doi.org/10.1016/j.rsase.2022.100874



  • Vatandaslar, C., O.G. Narin, and S. Abdikan (2022). Retrieval of forest height information using spaceborne LiDAR data: a comparison of GEDI and ICESat-2 missions for Crimean pine (Pinus nigra) stands. Trees. https://doi.org/10.1007/s00468-022-02378-x


  • Dandabathula, G., R. Hari, K. Ghosh, et al (2022). Accuracy assessment of digital bare-earth model using ICESat-2 photons: analysis of the FABDEM. Modeling Earth Systems and Environment. https://doi.org/10.1007/s40808-022-01648-4


  • Wu, Z. and F. Shi (2022). Mapping Forest Canopy Height at Large Scales Using ICESat-2 and Landsat: An Ecological Zoning Random Forest Approach. IEEE Transactions on Geoscience and Remote Sensing. Vol. 61. https://doi.org/10.1109/TGRS.2022.3231926


  • Shen, Y., D. Liu, L. Jiang, K. Nielsen, J. Yin,  J. Liu, and P. Bauer-Gottwein (2022). High-resolution water level and storage variation datasets for 338 reservoirs in China during 2010–2021. Earth System Science Data. Vol. 14, Issue 12. https://doi.org/10.5194/essd-14-5671-2022


  • Zeng, J., J. Xie, R. Liu, F. Mo, and X. Yang (2022). Research on Glacier Elevation Variability in the Qilian Mountains of the Qinghai-Tibet Plateau Based on Topographic Correction by Pyramid Registration. Remote Sensing. Vol. 15, Issue 1. https://doi.org/10.3390/rs15010062


  • Liu, X., G. Hui, J. Guo, T. Zhang, and M. Song (2022). Inversion of Deflection of the Vertical in the South China Sea Using ICESat-2 Sea Surface Height Data. Remote Sensing. Vol. 15, Issue 1. https://doi.org/10.3390/rs15010030


  • Song, H., L. Xi, Q. Shu, Z. Wei, and S. Qiu (2022). Estimate Forest Aboveground Biomass of Mountain by ICESat-2/ATLAS Data Interacting Cokriging. Forests. Vol. 14, Issue 1. https://doi.org/10.3390/f14010013


  • Malambo, L., S. Popescu, and M. Liu (2022). Landsat-Scale Regional Forest Canopy Height Mapping Using ICESat-2 Along-Track Heights: Case Study of Eastern Texas. Remote Sensing. Vol. 15, Issue 1. https://doi.org/10.3390/rs15010001


  • Zhang, Z., Y. Bo, S. Jin, G. Chen, and Z. Dong (2022). Dynamic water level changes in Qinghai Lake from integrating refined ICESat-2 and GEDI altimetry data (2018–2021). Journal of Hydrology. Vol. 617. https://doi.org/10.1016/j.jhydrol.2022.129007


  • Enderlin, E. M., C. M. Elkin, M. Gendreau, H.P. Marshall, S. O'Neel, C. McNeil, C. Florentine, and L. Sass (2022). Uncertainty of ICESat-2 ATL06- and ATL08-derived snow depths for glacierized and vegetated mountain regions. Remote Sensing of Environment. Vol. 283. https://doi.org/10.1016/j.rse.2022.113307


  • Huang, W., J. Zhao, B. Ai, S. Sun and N. Yan (2022). Bathymetry and Benthic Habitat Mapping in Shallow Waters From Sentinel-2A Imagery: A Case Study in Xisha Islands, China. IEEE Transactions on Geoscience and Remote Sensing. Vol. 60. https://doi.org/10.1109/TGRS.2022.3229029


  • Chen, G., Z. Zhang, S. K. Rose, O. B. Andersen, S. Zhang, and T. Jin (2022). A new Arctic MSS model derived from combined Cryosat-2 and ICESat observations. International Journal of Digital Earth. https://doi.org/10.1080/17538947.2022.2153181


  • Wang, Q., and W. Sun (2022). Seasonal cycles of High Mountain Asia glacier surface elevation detected by ICESat-2. Journal of Geophysical Research: Atmospheres. Vol. 127, Issue 23. https://doi.org/10.1029/2022JD037501


  • Lian, W.,  G. Zhang, H. Cui, Z. Chen, S. Wei, C. Zhu, and Z. Xie (2022). Extraction of high-accuracy control points using ICESat-2 ATL03 in urban areas. International Journal of Applied Earth Observation and Geoinformation. Vol. 115. https://doi.org/10.1016/j.jag.2022.103116


  • Leng, Z., J. Zhang, Y. Ma, J. Zhang, and H. Zhu (2022). A novel bathymetry signal photon extraction algorithm for photon-counting LiDAR based on adaptive elliptical neighborhood. International Journal of Applied Earth Observation and Geoinformation. Vol. 115. https://doi.org/10.1016/j.jag.2022.103080


  • Blanchard-Wrigglesworth, E., M. Webster, L. Boisvert, C. Parker, and C. Horvat (2022). Record Arctic Cyclone of January 2022: Characteristics, Impacts, and Predictability. JGR Atmospheres. Vol. 127, Issue 21. https://doi.org/10.1029/2022JD037161


  • Soriot, C., C. Prigent, C. Jimenez, and F. Frappart (2022). Arctic sea ice thickness estimation from passive microwave satellite observations between 1.4 and 36 GHz. Earth and Space Science. https://doi.org/10.1029/2022EA002542



  • Musthafa, M., G. Singh, and P. Kumar (2022). Comparison of forest stand height interpolation of GEDI and ICESat-2 LiDAR measurements over tropical and sub-tropical forests in India. Environmental Monitoring and Assessment. https://doi.org/10.1007/s10661-022-10657-w


  • Yang, J., Y. Ma, H. Zheng, N. Xu, K. Zhu, X.H. Wang, and S. Li (2022). Derived depths in opaque waters using ICESat-2 photon-counting lidar. Geophysical Research Letters. Vol. 49, Issue 22. https://doi.org/10.1029/2022GL100509


  • Scherer, D., C. Schwatke, D. Dettmering, and F. Seitz (2022). ICESat-2 based river surface slope and its impact on water level time series from satellite altimetry. Water Resources Research. Vol. 58, Issue 11. https://doi.org/10.1029/2022WR032842


  • Urbazaev, M., L. L. Hess, S. Hancock, L. Y. Sato, J. P. Ometto, C. Thiel, C. Dubois, K. Heckel, M. Urban, M. Adam, and C. Schmullius (2022). Assessment of terrain elevation estimates from ICESat-2 and GEDI spaceborne LiDAR missions across different land cover and forest types. Science of Remote Sensing. Vol. 6. https://doi.org/10.1016/j.srs.2022.100067


  • Zhu, X., S. Nie, C. Wang, X. Xi, J. Lao, and D. Li (2022). Consistency analysis of forest height retrievals between GEDI and ICESat-2. Remote Sensing of Environment. Vol. 281. https://doi.org/10.1016/j.rse.2022.113244


  • Shang, D., Y. Zhang, C. Dai, Q. Ma and Z. Wang (2022). Extraction Strategy for ICESat-2 Elevation Control Points Based on ATL08 Product. IEEE Transactions on Geoscience and Remote Sensing. Vol. 60. https://doi.org/10.1109/TGRS.2022.3218750


  • Ye, Q., X. Zhang, Y. Wang, Z. Zhang, Y. Hu, and L. Zhu (2022). Monitoring glacier thinning rate in Rongbuk Catchment on the northern slope of Mt. Qomolangma from 1974 to 2021. Ecological Indicators. Vol. 144. https://doi.org/10.1016/j.ecolind.2022.109418


  • Narine, L., L. Malambo, and S. Popescu (2022). Characterizing canopy cover with ICESat-2: A case study of southern forests in Texas and Alabama, USA. Remote Sensing of Environment. Vol. 281. https://doi.org/10.1016/j.rse.2022.113242


  • Zhang, Z., X. Liu, and W. Wright (2022). Spatiotemporal water dynamic modelling of Ramsar-listed lakes on the Victorian Volcanic Plains using Landsat, ICESat-2 and airborne LiDAR data. Ecological Informatics. Vol. 71. https://doi.org/10.1016/j.ecoinf.2022.101789


  • Wang, T., Y. Fang, S. Zhang, B. Cao, and Z. Wang (2022). Biases Analysis and Calibration of ICESat-2/ATLAS Data Based on Crossover Adjustment Method. Remote Sensing. Vol. 14, Issue 20. https://doi.org/10.3390/rs14205125


  • Peng, K., H. Xie, Q. Xu, P. Huang and Z. Liu (2022). A Physics-Assisted Convolutional Neural Network for Bathymetric Mapping Using ICESat-2 and Sentinel-2 Data. IEEE Transactions on Geoscience and Remote Sensing. Vol. 60. https://doi.org/10.1109/TGRS.2022.3213248


  • Medley, B., T. A. Neumann, H. J. Zwally, B. E. Smith, and C. M. Stevens (2022). Simulations of firn processes over the Greenland and Antarctic ice sheets: 1980–2021. The Cryosphere. Vol. 16, Issue 10. https://doi.org/10.5194/tc-16-3971-2022


  • Girohi, P., and A. Bhardwaj (2022). A Neural Network-Based Fusion Approach for Improvement of SAR Interferometry-Based Digital Elevation Models in Plain and Hilly Regions of India. AI. Vol. 3, Issue 4. https://doi.org/10.3390/ai3040050


  • Meng, W., J. Li, Q. Tang, W. Xu, and Z. Dong (2022). ICESat-2 laser data denoising algorithm based on a back propagation neural network. Applied Optics. Vol. 61, Issue 28. https://doi.org/10.1364/AO.469584


  • Liu, M., and S. Popescu (2022). Estimation of biomass burning emissions by integrating ICESat-2, Landsat 8, and Sentinel-1 data. Remote Sensing of Environment. Vol. 280. https://doi.org/10.1016/j.rse.2022.113172


  • Jiang, F., H. Sun, K. Ma, L. Fu, and J. Tang (2022). Improving aboveground biomass estimation of natural forests on the Tibetan Plateau using spaceborne LiDAR and machine learning algorithms. Ecological Indicators. Vol. 143. https://doi.org/10.1016/j.ecolind.2022.109365


  • Qin, H., W. Zhou, Y. Qian, H. Zhang, and Y. Yao (2022). Estimating aboveground carbon stocks of urban trees by synergizing ICESat-2 LiDAR with GF-2 data. Urban Forestry & Urban Greening. Vol. 76. https://doi.org/10.1016/j.ufug.2022.127728



  • Osama, N., Z. Shao, Y. Ma, J. Yan, Y. Fan, S. M. Habib, and M. Freeshah (2022). The ATL08 as a height reference for the global digital elevation models. Geo-spatial Information Science. https://doi.org/10.1080/10095020.2022.2087108



  • Guerra-Hernández, J., L. L. Narine, A. Pascual, E. Gonzalez-Ferreiro, B. Botequim, L. Malambo, A. Neuenschwander, S. C. Popescu and S. Godinho (2022). Aboveground biomass mapping by integrating ICESat-2, SENTINEL-1, SENTINEL-2, ALOS2/PALSAR2, and topographic information in Mediterranean forests. GIScience & Remote Sensing. Vol. 59, Issue 1. https://doi.org/10.1080/15481603.2022.2115599


  • Pan J., et al. (2022). Land Cover Classification Using ICESat-2 Photon Counting Data and Landsat 8 OLI Data: A Case Study in Yunnan Province, China. IEEE Geoscience and Remote Sensing Letters. https://doi.org/10.1109/LGRS.2022.3209725


  • Narin, O.G., and S. Abdikan (2022). Multi-temporal analysis of inland water level change using ICESat-2 ATL-13 data in lakes and dams. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-022-23172-9


  • Smith, M. M., M. M. Holland, A. A. Petty, B. Light, and D. A. Bailey (2022). Effects of increasing the category resolution of the sea ice thickness distribution in a coupled climate model on Arctic and Antarctic sea ice mean state. Journal of Geophysical Research: Oceans. Vol. 127, Issue 10. https://doi.org/10.1029/2022JC019044


  • Jiang, F., M. Deng, J. Tang et al. (2022). Integrating spaceborne LiDAR and Sentinel-2 images to estimate forest aboveground biomass in Northern China. Carbon Balance and Management.  https://doi.org/10.1186/s13021-022-00212-y


  • Zheng, H., Y. Ma, J. Huang, J. Yang, D. Su, F. Yang, and X. H. Wang (2022). Deriving vertical profiles of chlorophyll-a concentration in the upper layer of seawaters using ICESat-2 photon-counting lidar. Optics Express. Vol. 30, Issue 18. https://doi.org/10.1364/OE.463622


  • Girohi, P., and A. Bhardwaj (2022). ANN-Based DEM Fusion and DEM Improvement Frameworks in Regions of Assam and Meghalaya using Remote Sensing Datasets. European Journal of Environment and Earth Sciences. Vol. 3, Issue 4. https://doi.org/10.24018/ejgeo.2022.3.4.305


  • Nilsson, J., A. S. Gardner, and F. S. Paolo (2022). Elevation change of the Antarctic Ice Sheet: 1985 to 2020. Earth System Science Data. Vol. 14, Issue 8. https://doi.org/10.5194/essd-14-3573-2022


  • Wang, J., Y. Yang, C. Wang, and L. Li (2022). Accelerated Glacier Mass Loss over Svalbard Derived from ICESat-2 in 2019–2021. Atmosphere. Vol.13, Issue 8. https://doi.org/10.3390/atmos13081255


  • Li, S., J. Liao, and L. Zhang (2022). Extraction and analysis of elevation changes in Antarctic ice sheet from CryoSat-2 and Sentinel-3 radar altimeters. Journal of Applied Remote Sensing. Vol. 16, Issue 3. https://doi.org/10.1117/1.JRS.16.034514


  • Lu, X., Y. Hu, A. Omar, Y. Yang, M. Vaughan, S. Rodier, A. Garnier, R. Ryan, B. Getzewich, and C. Trepte (2022). Nearshore bathymetry and seafloor property studies from Space lidars: CALIPSO and ICESat-2. Optics Express. Vol. 30, Issue 20. https://doi.org/10.1364/OE.471444


  • Fan, Y., C. Ke, X. Zhou, X. Shen, X. Yu, and D. Lhakpa (2022). Glacier mass-balance estimates over High Mountain Asia from 2000 to 2021 based on ICESat-2 and NASADEM. Journal of Glaciology. https://doi.org/10.1017/jog.2022.78


  • Moudrý, V., K. Gdulová, L. Gábor, E. Šárovcová, V. Barták, F. Leroy, O. Špatenková, D. Rocchini, and J. Prošek (2022). Effects of environmental conditions on ICESat-2 terrain and canopy heights retrievals in Central European mountains. Remote Sensing of Environment. Vol. 279. https://doi.org/10.1016/j.rse.2022.113112


  • Xie, H., Y. Sun, Q. Xu, B. Li, Y. Guo, X. Liu, P. Huang, and X. Tong (2022). Converting along-track photons into a point-region quadtree to assist with ICESat-2-based canopy cover and ground photon detection. International Journal of Applied Earth Observation and Geoinformation. Vol. 112. https://doi.org/10.1016/j.jag.2022.102872


  • Li, Y., H. Fu, S. Gao, J. Zhu, L. Wang and C. Wang (2022). Retrieving Low and Sparse Vegetation Heights in Desert Ecosystems Using ICESat-2 ATL03 Photon-Counting LiDAR Data. IEEE Geoscience and Remote Sensing Letters. Vol. 19. https://doi.org/10.1109/LGRS.2022.3194877


  • Liu, C., R. Hu, Y. Wang, H. Lin, H. Zeng, D. Wu, Z. Liu, Y. Dai, X. Song, and C. Shao (2022). Monitoring water level and volume changes of lakes and reservoirs in the Yellow River Basin using ICESat-2 laser altimetry and Google Earth Engine. Journal of Hydro-environment Research. Vol. 44. https://doi.org/10.1016/j.jher.2022.07.005


  • Thomas, N., B. Lee, O. Coutts, P. Bunting, D. Lagomasino and L. Fatoyinbo (2022). A Purely Spaceborne Open Source Approach for Regional Bathymetry Mapping. IEEE Transactions on Geoscience and Remote Sensing. Vol. 60. https://doi.org/10.1109/TGRS.2022.3192825


  • Hao, T. et al. (2022). Impact of Slopes on ICESat-2 Elevation Accuracy Along the CHINARE Route in East Antarctica. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. Vol. 15. https://doi.org/10.1109/JSTARS.2022.3189042


  • Hachmeister, J. et al. (2022). On the influence of underlying elevation data on Sentinel-5 Precursor TROPOMI satellite methane retrievals over Greenland. Atmos. Meas. Tech. Vol. 15, Issue 13. https://doi.org/10.5194/amt-15-4063-2022


  • Shen, X., C.-Q. Ke, Y. Fan, and L. Drolma (2022). A new digital elevation model (DEM) dataset of the entire Antarctic continent derived from ICESat-2. Earth System Science Data. Vol. 14, Issue 7. https://doi.org/10.5194/essd-14-3075-2022



  • Xie, L., W. Xu, X. Ding, R. Bürgmann, S. Giri, and X. Liu (2022). A multi-platform, open-source, and quantitative remote sensing framework for dam-related hazard investigation: Insights into the 2020 Sardoba dam collapse. International Journal of Applied Earth Observation and Geoinformation. Vol. 111. https://doi.org/10.1016/j.jag.2022.102849


  • Li, H., J. Zhao, B. Yan, L. Yue, and L. Wang (2022). Global DEMs vary from one to another: an evaluation of newly released Copernicus, NASA and AW3D30 DEM on selected terrains of China using ICESat-2 altimetry data. International Journal of Digital Earth. https://doi.org/10.1080/17538947.2022.2094002 


  • Enterkine, J., B. A. Campbell, H. Kohl, N. F. Glenn, K. Weaver, D. Overoye and D. Danke (2022). The potential of citizen science data to complement satellite and airborne lidar tree height measurements: lessons from The GLOBE Program. Environmental Research Letters. Vol. 17. https://doi.org/10.1088/1748-9326/ac77a2


  • Gökberk Narin, O., C. Vatandaşlar, and S. Abdikan (2022). Estimating stand top height using freely distributed ICESat-2 LiDAR data: A case study from multi-species forests in Artvin. Forestist.  https://doi.org/10.5152/forestist.2022.21044



  • Khan, S. A., W. Colgan, T. A. Neumann,  M. R. van den Broeke, K. M. Brunt, B. Noël, et al. (2022). Accelerating ice loss from peripheral glaciers in North Greenland. Geophysical Research Letters. Vol. 49, Issue 12. https://doi.org/10.1029/2022GL098915


  • Jiang, Y. -H., S. Wei, M. Xu, G. Zhang and J. -y. Wang (2022). Combined adjustment pipeline for improved global geo-positioning accuracy of optical satellite imagery with the aid of SAR and GLAS. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. https://doi.org/10.1109/JSTARS.2022.3183594


  • Gao, S., Y. Li, J. Zhu, H. Fu and C. Zhou (2022). Retrieving Forest Canopy Height From ICESat-2 Data by an Improved DRAGANN Filtering Method and Canopy Top Photons Classification. IEEE Geoscience and Remote Sensing Letters. Vol. 19. https://doi.org/10.1109/LGRS.2022.3183683


  • Jain, A., R. Ramakrishnan, A.V. Thomaskutty, R. Agrawal, A.S. Rajawat, and H. Solanki (2022). Topography and morphodynamic study of intertidal mudflats along the eastern coast of the Gulf of Khambhat, India using remote sensing techniques. Remote Sensing Applications: Society and Environment. Vol. 27. https://doi.org/10.1016/j.rsase.2022.100798


  • Li, W., C. Slobbe, and S. Lhermitte (2022). A leading-edge-based method for correction of slope-induced errors in ice-sheet heights derived from radar altimetry. The Cryosphere. Vol. 16, Issue 6. https://doi.org/10.5194/tc-16-2225-2022


  • Zhao, P., S. Li, Y. Ma, X. Liu, J. Yang, and D. Yu (2022). A new terrain matching method for estimating laser pointing and ranging systematic biases for spaceborne photon-counting laser altimeters. ISPRS Journal of Photogrammetry and Remote Sensing. Vol. 188. https://doi.org/10.1016/j.isprsjprs.2022.04.015


  • Zou, S., H. Pan, Z. Zou, Y. Zhang, and S. Wu (2022). ICESat-2 Laser Altimetry Data-Guided High-Accuracy Positioning of Satellite Stereo Images. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. V-1-2022. https://doi.org/10.5194/isprs-annals-V-1-2022-41-2022


  • Xu, Q., H. Xie, Y. Sun, X. Liu, Y. Guo, P. Huang, B. Li, and  X. Tong (2022). Auto-Adaptive Multi-Level Seafloor Recognition and Land Sea Classification (AMSRLC) in Reef-Island Zones Using ICESat-2 Laser Altimetry. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XLIII-B2-2022. https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-309-2022


  • Wang, L., G. Qiao, I. V. Florinsky, and S. Popov (2022). Landfast Iceberg Height Retrieval and Evaluation Based on Remote Sensing Approaches in Antartica. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XLIII-B3-2022. https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-785-2022


  • Wang, X. and X. Liang (2022). Photon-Counting Laser Altimeter Data Filtering Based on Hierarchical Adaptive Filter for Forest Scenario. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XLIII-B3-2022. https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-205-2022


  • Tourian, M. J., O. Elmi, Y. Shafaghi, S. Behnia, P. Saemian, R. Schlesinger, and N. Sneeuw (2022). HydroSat: geometric quantities of the global water cycle from geodetic satellites. Earth System Science Data. Vol. 14, Issue 5. https://doi.org/10.5194/essd-14-2463-2022


  • Xie, H. et al. (2022). A Density-based Adaptive Method for Photons Detection of Ground and Canopy from ICESat-2 Photon-Counting Data.  IEEE Transactions on Geoscience and Remote Sensing.  https://doi.org/10.1109/TGRS.2022.3176982


  • Pang, S., G. Li, X. Jiang, Y. Chen, Y. Lu, and D. Lu (2022). Retrieval of forest canopy height in a mountainous region with ICESat-2 ATLAS. Forest Ecosystems. Vol. 9. https://doi.org/10.1016/j.fecs.2022.100046


  • Lu, X., Y. Hu, X. Zeng, S. A. Stamnes, T. A. Neuman, N. T. Kurtz, Y. Yang, P. Zhai, M. Gao, W. Sun, K. Xu, Z. Liu, A. H. Omar, R. R. Baize, L. J. Rogers, B. O. Mitchell, K. Stamnes, Y. Huang, N. Chen, C. Weimer, J. Lee, and Z. Fair (2022). Deriving Snow Depth From ICESat-2 Lidar Multiple Scattering Measurements: Uncertainty Analyses. Frontiers in Remote Sensing. Vol. 3. https://doi.org/10.3389/frsen.2022.891481


  • Tan, J. et al. (2022). Riparian Zone DEM Generation From Time-Series Sentinel-1 and Corresponding Water Level: A Novel Waterline Method. IEEE Transactions on Geoscience and Remote Sensing. Vol. 60. https://doi.org/10.1109/TGRS.2022.3170342


  • Zhang, G. et al. (2022). Ground Photon Extraction From Photon-Counting LiDAR Data Using Adaptive Cloth Simulation With Terrain Index.  IEEE Geoscience and Remote Sensing Letters. Vol. 19. https://doi.org/10.1109/LGRS.2022.3170296


  • Milenković, M., J. Reiche, J. Armston, A. Neuenschwander, W. De Keersmaecker, M. Herold, and J. Verbesselt (2022). Assessing amazon rainforest regrowth with GEDI and ICESat-2 data. Science of Remote Sensing. https://doi.org/10.1016/j.srs.2022.100051


  • Culberg, R., D.M. Schroeder, and G. Steinbrügge (2022). Double ridge formation over shallow water sills on Jupiter’s moon Europa. Nature Communications. Vol. 13. https://doi.org/10.1038/s41467-022-29458-3


  • Surisetty, V.V.A.K., P. Rajput, R. Ramakrishnan et al. (2022). Synergistic Fusion of ICESat-2 Lidar and Sentinel-2 Data to Leverage Potential Mapping of Bathymetry in Remote Islands Using SVR. Journal of the Indian Society of Remote Sensing. https://doi.org/10.1007/s12524-022-01537-4


  • Taubenberger, C. J., D. Felikson, and T. Neumann (2022). Brief communication: Preliminary ICESat-2 (Ice, Cloud and land Elevation Satellite-2) measurements of outlet glaciers reveal heterogeneous patterns of seasonal dynamic thickness change. The Cryosphere. Vol. 16, Issue 4. https://doi.org/10.5194/tc-16-1341-2022


  • Wang, Y., X. Yang, and C. Wang (2022). Vegetation and land classification method based on the background noise rate of a photon-counting LiDAR. Optics Express. Vol. 30, Issue 9. https://doi.org/10.1364/OE.456447


  • Hu, Y., X. Lu, X. Zeng, S.A. Stamnes, T.A. Neuman, N.T. Kurtz, P. Zhai, M. Gao, W. Sun, K. Xu, Z. Liu, A.H. Omar, R.R. Baize, L.J. Rogers, B.O. Mitchell, K. Stamnes, Y. Huang, N. Chen, C. Weimer, J. Lee, and Z. Fair (2022). Deriving Snow Depth From ICESat-2 Lidar Multiple Scattering Measurements. Frontiers in Remote Sensing. Vol. 3. https://doi.org/10.3389/frsen.2022.855159  


  • Zhang, D., Y. Chen, Y. Le, Y. Dong, G. Dai, and L. Wang (2022). Refraction and coordinate correction with the JONSWAP model for ICESat-2 bathymetry. ISPRS Journal of Photogrammetry and Remote Sensing. Vol. 186. https://doi.org/10.1016/j.isprsjprs.2022.02.020


  • Wang, Y., X. He, Y. Bai, D. Wang, Q. Zhu, F. Gong, D. Yang, and T. Li (2022). Satellite retrieval of benthic reflectance by combining lidar and passive high-resolution imagery: Case-I water. Remote Sensing of Environment. Vol. 272. https://doi.org/10.1016/j.rse.2022.112955


  • Dong, Y., J. Zhao, C. Li, and M. Liao (2022). Gapless-REMA100: A gapless 100-m reference elevation model of Antarctica with voids filled by multi-source DEMs. ISPRS Journal of Photogrammetry and Remote Sensing. Vol. 186. https://doi.org/10.1016/j.isprsjprs.2022.01.024


  • Fernandez-Diaz, J.C., M. Velikova and C. L. Glennie (2022). Validation of ICESat-2 ATL08 Terrain and Canopy Height Retrievals in Tropical Mesoamerican Forests. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. Vol. 15. https://doi.org/10.1109/JSTARS.2022.3163208


  • Shen, C., L. Jia, and S. Ren (2022). Inter- and Intra-Annual Glacier Elevation Change in High Mountain Asia Region Based on ICESat-1&2 Data Using Elevation-Aspect Bin Analysis Method. Remote Sensing. Vol. 14, Issue 7. https://doi.org/10.3390/rs14071630


  • Huang, J., Y. Xing, Y. Shuai and H. Zhu (2022). A Novel Noise Filtering Evaluation Criterion of ICESat-2 Signal Photon Data in Forest Environments. IEEE Geoscience and Remote Sensing Letters. Vol. 19. https://doi.org/10.1109/LGRS.2022.3163143


  • Zhang, Y., N. Wang, X. Yang, and Z. Mao (2022). The Dynamic Changes of Lake Issyk-Kul from 1958 to 2020 Based on Multi-Source Satellite DataRemote Sensing. Vol. 14, Issue 7. https://doi.org/10.3390/rs14071575


  • Bacalhau, J.R., A.R. Neto, J. Crétaux, M. Bergé-Nguyen, and D.M. Moreira (2022). Bathymetry of reservoirs using altimetric data associated to optical images. Advances in Space Research. https://doi.org/10.1016/j.asr.2022.03.011


  • Kacimi, S., and R. Kwok (2022). Arctic snow depth, ice thickness, and volume from ICESat-2 and CryoSat-2: 2018–2021. Geophysical Research Letters. Vol. 49, Issue 5. https://doi.org/10.1029/2021GL097448


  • Nilsson, B., O.B. Andersen, H. Ranndal, and M.L. Rasmussen (2022). Consolidating ICESat-2 Ocean Wave Characteristics with CryoSat-2 during the CRYO2ICE Campaign. Remote Sensing. Vol. 14, Issue 6. https://doi.org/10.3390/rs14061300


  • Hai, G., Y. Cheng, H. Xie, T. Hao, G. Qiao and R. Li (2022). Assessment of CryoSat-2 Baseline-D Height Product by GNSS and ICESat-2 in Lambert-Amery System, East Antarctica. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. https://doi.org/10.1109/JSTARS.2022.3156929


  • Herrmann, J., L.A. Magruder, J. Markel, and C.E. Parrish (2022). Assessing the Ability to Quantify Bathymetric Change over Time Using Solely Satellite-Based Measurements. Remote Sensing. Vol. 14, Issue 5. https://doi.org/10.3390/rs14051232


  • Herzfeld, U.C., M. Lawson, T. Trantow, and T. Nylen (2022). Airborne Validation of ICESat-2 ATLAS Data over Crevassed Surfaces and Other Complex Glacial Environments: Results from Experiments of Laser Altimeter and Kinematic GPS Data Collection from a Helicopter over a Surging Arctic Glacier (Negribreen, Svalbard). Remote Sensing . Vol.14, Issue 5. https://doi.org/10.3390/rs14051185


  • Liu, J., H. Xie, Y. Guo, X. Tong, and P. Li (2022). A Sea Ice Concentration Estimation Methodology Utilizing ICESat-2 Photon-Counting Laser Altimeter in the Arctic. Remote Sensing. Vol. 14, Issue 5. https://doi.org/10.3390/rs14051130


  • X. Zhang, Y. Chen, Y. Le, D. Zhang, Q.Yan, Y. Dong, W. Han and L. Wang (2022). Nearshore bathymetry based on ICESat-2 and multispectral images: comparison between Sentinel 2, Landsat 8, and testing Gaofen-2. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. https://doi.org/10.1109/JSTARS.2022.3153681


  • Pang, X., Y. Chen, Q. Ji, G. Li, L. Shi, M. Lan, and Z. Liang (2022). An Improved Algorithm for the Retrieval of the Antarctic Sea Ice Freeboard and Thickness from ICESat-2 Altimeter Data. Remote Sensing. Vol. 14, Issue 5. https://doi.org/10.3390/rs14051069


  • Feng, Y., H. Zhang, S. Tao, Z. Ao, C. Song, J. Chave, T.L. Toan, B. Xue, J. Zhu, J. Pan, S. Wang, Z. Tang, and J. Fang (2022). Decadal Lake Volume Changes (2003–2020) and Driving Forces at a Global Scale. Remote Sensing. Vol. 14, Issue 4. https://doi.org/10.3390/rs14041032


  • Fan, Y., C.-Q. Ke, and X. Shen (2022). A new Greenland digital elevation model derived from ICESat-2 during 2018–2019. Earth System Science Data. Vol. 14, Issue 2. https://doi.org/10.5194/essd-14-781-2022


  • Fan, Y., W. Hao, B. Zhang, C. Ma, S. Gao, X. Shen, and F. Li (2022). Monitoring the Hydrological Activities of Antarctic Subglacial Lakes Using CryoSat-2 and ICESat-2 Altimetry Data. Remote Sensing. Vol.14, Issue 4. https://doi.org/10.3390/rs14040898



  • Neuenschwander, A., L. Magruder, E. Guenther, S. Hancock, and M. Purslow (2022). Radiometric Assessment of ICESat-2 over Vegetated Surfaces. Remote Sensing. Vol. 14, Issue 3. https://doi.org/10.3390/rs14030787


  • Liu, C., J. Li, Q. Tang, J. Qi, and X. Zhou (2022). Classifying the Nunivak Island Coastline Using the Random Forest Integration of the Sentinel-2 and ICESat-2 Data. Land. Vol. 11, Issue 2. https://doi.org/10.3390/land11020240


  • Hawker, L., P. Uhe, L. Paulo, J. Sosa, J. Savage, C. Sampson, and J. Neal (2022). A 30 m global map of elevation with forests and buildings removed. Environmental Research Letters. Vol. 17. https://doi.org/10.1088/1748-9326/ac4d4f


  • Shen, X., C. Ke and H. Li (2022). Snow depth product over Antarctic sea ice from 2002 to 2020 using multisource passive microwave radiometers. Earth System Science Data. Vol. 14, Issue 2. https://doi.org/10.5194/essd-14-619-2022


  • Li, T., G.J. Dawson, S.J. Chuter, and J.L. Bamber (2022). A high-resolution Antarctic grounding zone product from ICESat-2 laser altimetry. Earth System Science Data. Vol. 14, Issue 2. https://doi.org/10.5194/essd-14-535-2022


  • Mulverhill, C., N.C. Coops, T. Hermosilla, J.C. White, and M.A. Wulder (2022). Evaluating ICESat-2 for monitoring, modeling, and update of large area forest canopy height products. Remote Sensing of Environment, Vol. 271. https://doi.org/10.1016/j.rse.2022.112919


  • Luo, S., C. Song, L. Ke, P. Zhan, C. Fan, K. Liu, et al. (2022). Satellite laser altimetry reveals a net water mass gain in global lakes with spatial heterogeneity in the early 21st century. Geophysical Research Letters, Vol. 49, Issue 3. https://doi.org/10.1029/2021GL096676



  • Xu, N., Y. Ma, J. Yang, X. H. Wang, Y. Wang, and R. Xu (2022). Deriving tidal flat topography using ICESat-2 laser altimetry and Sentinel-2 imagery. Geophysical Research Letters, Vol. 49, Issue 2. https://doi.org/10.1029/2021GL096813


  • Zhao, F., D. Long, X. Li, Q. Huang, P. Han (2022). Rapid glacier mass loss in the Southeastern Tibetan Plateau since the year 2000 from satellite observations. Remote Sensing of Environment, Vol. 270, https://doi.org/10.1016/j.rse.2021.112853.


  • Simurda, C., L.A. Magruder, J. Markel, J.B. Garvin, and D.A. Slayback (2022). ICESat-2 Applications for Investigating Emerging Volcanoes. Geosciences, Vol. 12, Issue 1. https://doi.org/10.3390/geosciences12010040


  • Braakmann-Folgmann, A., A. Shepherd, L. Gerrish, J. Izzard, and A. Ridout (2022). Observing the disintegration of the A68A iceberg from space. Remote Sensing of Environment, Vol. 270. https://doi.org/10.1016/j.rse.2021.112855



  • Le Quilleuc, A., A. Collin, M.F. Jasinski, and R. Devillers (2022). Very High-Resolution Satellite-Derived Bathymetry and Habitat Mapping Using Pleiades-1 and ICESat-2Remote Sensing, Vol. 14, Issue 1. https://doi.org/10.3390/rs14010133


  • Ye, J., Y. Qiang, R. Zhang, X. Liu, Y. Deng, and J. Zhang (2022). High-Precision Digital Surface Model Extraction from Satellite Stereo Images Fused with ICESat-2 DataRemote Sensing, Vol. 14, Issue 1. https://doi.org/10.3390/rs14010142


  • Li, B., G. Fan, T. Zhao, Z. Deng, and Y. Yu (2022). Retrieval of DTM under Complex Forest Stand Based on Spaceborne LiDAR Fusion Photon Correction. Remote Sensing. Vol. 14, Issue 1. https://doi.org/10.3390/rs14010218


  • Wang, X., D. Voytenko, and D.M. Holland (2022). Accuracy evaluation of digital elevation models derived from Terrestrial Radar Interferometer over Helheim Glacier, Greenland. Remote Sensing of Environment, Vol. 268. https://doi.org/10.1016/j.rse.2021.112759


  • Hermosilla, T., M.A. Wulder, J.C. White, and N.C. Coops (2022). Land cover classification in an era of big and open data: Optimizing localized implementation and training data selection to improve mapping outcomes. Remote Sensing of Environment, Vol. 268. https://doi.org/10.1016/j.rse.2021.112780



  • Zhang, G. et al. (2021). A Noise-Removal Algorithm Without Input Parameters Based on Quadtree Isolation for Photon-Counting LiDAR. IEEE Geoscience and Remote Sensing Letters. Vol. 19. https://doi.org/10.1109/LGRS.2021.3081721


  • Xu, N., H. Zheng, Y. Ma, J. Yang, X. Liu, and X. Wang (2021). Global Estimation and Assessment of Monthly Lake/Reservoir Water Level Changes Using ICESat-2 ATL13 Products. Remote Sensing. Vol. 13, Issue 14. https://doi.org/10.3390/rs13142744


  • Rignot, E., L. An, N. Chauche, M. Morlighem, S. Jeong, M. Wood, et al. (2021). Retreat of Humboldt Gletscher, north Greenland, driven by undercutting from a warmer ocean. Geophysical Research Letters. Vol. 48, Issue 6. https://doi.org/10.1029/2020GL091342


  • Oehmcke, S., T. Nyegaard-Signori, K. Grogan and F. Gieseke (2021). Estimating Forest Canopy Height With Multi-Spectral and Multi-Temporal Imagery Using Deep Learning. 2021 IEEE International Conference on Big Data (Big Data). https://doi.org/10.1109/BigData52589.2021.9672018



  • Zhang, Z., S. Jin, X. Guo and Y. Bo (2021). Water Level Variation in Qinghai Lake from Global Ecosystem Dynamics Investigation (GEDI) Altimetry Data. Photonics & Electromagnetics Research Symposium (PIERS). https://doi.org/10.1109/PIERS53385.2021.9695004


  • Schenk, T., B. Csatho, T. Neumann (2021). Assessment of ICESat-2’s Horizontal Accuracy Using Precisely-Surveyed Terrains in McMurdo Dry Valleys, Antactica. IEEE Transactions on Geoscience and Remote Sensing. https://doi.org/10.1109/TGRS.2022.3147722.


  • Nguyen, V., H. Ren, C. Huang, K. Tseng (2021). Bathymetry derivation in shallow water of the South China Sea with ICESat-2 and Sentinel-2 data. Journal of Applied Remote Sensing, Vol. 15, Issue 4. https://doi.org/10.1117/1.JRS.15.044513


  • Datta, R. T. and B. Wouters (2021). Supraglacial lake bathymetry automatically derived from ICESat-2 constraining lake depth estimates from multi-source satellite imagery. The Cryosphere, Vol. 15, Issue 11. https://doi.org/10.5194/tc-15-5115-2021


  • Yang, P., H. Fu, J. Zhu, Y. Li and C. Wang (2021).  An Elliptical Distance Based Photon Point Cloud Filtering Method in Forest Area. IEEE Geoscience and Remote Sensing Letters, https://doi.org/10.1109/LGRS.2021.3124612


  • Zhao, Y., B. Wu, S. Shu, L. Yang, J. Wu and B. Yu (2021). Evaluation of ICESat-2 ATL03/08 Surface Heights in Urban Environments Using Airborne LiDAR Point Cloud Data. IEEE Geoscience and Remote Sensing Letters, https://doi.org/10.1109/LGRS.2021.3127540



  • Aublanc, J., P. Thibaut, A. Guillot, F. Boy, N. Picot (2021). Ice Sheet Topography from a New CryoSat-2 SARIn Processing Chain, and Assessment by Comparison to ICESat-2 over Antarctica. Remote Sensing, Vol. 13, Issue 22. https://doi.org/10.3390/rs13224508


  • Cao, B., Y. Fang, L. Gao, H. Hu, Z. Jiang, B. Sun and L. Lou (2021). An active-passive fusion strategy and accuracy evaluation for shallow water bathymetry based on ICESat-2 ATLAS laser point cloud and satellite remote sensing imagery. International Journal of Remote Sensing, Vol. 42, Issue 8. https://doi.org/10.1080/01431161.2020.1862441


  • Stovall, A.E.L., T. Fatoyinbo, N.M. Thomas, J. Armston, M.O. Ebanega, M. Simard, C. Trettin, R.V.O. Zogo, I.A. Aken, M. Debina, A.M.M. Kemoe, E.O. Assoumou, J.S. Kim, D. Lagomasino, S. Lee, J. Calvin, N. Obame, G.D. Voubou, and C.Z. Essono (2021). Comprehensive comparison of airborne and spaceborne SAR and LiDAR estimates of forest structure in the tallest mangrove forest on earth. Science of Remote Sensing, Vol. 4. https://doi.org/10.1016/j.srs.2021.100034


  • Corcoran, F. and C.E. Parrish (2021). Diffuse Attenuation Coefficient (Kd) from ICESat-2 ATLAS Spaceborne Lidar Using Random-Forest Regression. Photogrammetric Engineering & Remote Sensing. Vol. 87. https://doi.org/10.14358/PERS.21-00013R2


  • Li, B., H. Xie, S. Liu, X. Tong, H. Tang, and X. Wang (2021). A Method of Extracting High-Accuracy Elevation Control Points from ICESat-2 Altimetry Data. Photogrammetric Engineering & Remote Sensing, Vol. 87, Number 11. https://doi.org/10.14358/PERS.21-00009R2 


  • Bisson, K. M., and B.B. Cael (2021). How are under ice phytoplankton related to sea ice in the Southern Ocean? Geophysical Research Letters, Vol. 48, Issue 21. https://doi.org/10.1029/2021GL095051


  • Khorrami, B., F. Arik, and O. Gunduz (2021). Land deformation and sinkhole occurrence in response to the fluctuations of groundwater storage: an integrated assessment of GRACE gravity measurements, ICESat/ICESat-2 altimetry data, and hydrologic models. GIScience & Remote Sensinghttps://doi.org/10.1080/15481603.2021.2000349



  • Baur, M. J., T. Jagdhuber, A. F. Feldman, D. Chaparro, M. Piles, and D. Entekhabi (2021). Time-variations of zeroth-order vegetation absorption and scattering at L-band. Remote Sensing of Environment, Vol. 267, https://doi.org/10.1016/j.rse.2021.112726


  • Durand, M., A. Barros, J. Dozier, R. Adler, S. Cooley, D. Entekhabi, et al. (2021). Achieving breakthroughs in global hydrologic science by unlocking the power of multisensor, multidisciplinary Earth observations. AGU Advances, Vol. 2, Issue 4. https://doi.org/10.1029/2021AV000455


  • Aburto-Oropeza, O., C.M. Burelo-Ramos, E. Ezcurra,  et al. (2021). Relict Inland Mangrove Ecosystem Reveals Last Interglacial Sea Levels. Proceedings of the National Academy of Sciences. Vol. 118. Issue 41. https://doi.org/10.1073/pnas.2024518118


  • Gleason A. C. R., R. Smith, S.J. Purkis, K. Goodrich, A. Dempsey, and A. Mantero (2021). The Prospect of Global Coral Reef Bathymetry by Combining Ice, Cloud, and Land Elevation Satellite-2 Altimetry With Multispectral Satellite Imagery. Frontiers in Marine Science, Vol. 8. https://doi.org/10.3389/fmars.2021.694783 


  • Malambo, L., S. C. Popescu (2021). Assessing the agreement of ICESat-2 terrain and canopy height with airborne lidar over US ecozones. Remote Sensing of Environment, Vol. 266. https://doi.org/10.1016/j.rse.2021.112711.


  • Lu, X., Y. Hu, Y. Yang, T. Neumann, A. Omar, R. Baize, et al. (2021). New ocean subsurface optical properties from space lidars: CALIOP/CALIPSO and ATLAS/ICESat-2. Earth and Space Science, Vol. 8, Issue 10.  https://doi.org/10.1029/2021EA001839


  • Xu, Y., H. Li, B. Liu, H. Xie, and B. Ozsoy-Cicek (2021). Deriving Antarctic sea-ice thickness from satellite altimetry and estimating consistency for NASA's ICESat/ICESat-2 missions. Geophysical Research Letters. Vol. 48, Issue 20. https://doi.org/10.1029/2021GL093425


  • Lao, J., C. Wang, X. Zhu, X. Xi, S. Nie, J. Wang, F. Cheng, and G. Zhou (2021). Retrieving building height in urban areas using ICESat-2 photon-counting LiDAR data. International Journal of Applied Earth Observation and Geoinformation, Vol. 104, https://doi.org/10.1016/j.jag.2021.102596.


  • Neckel, N., S. Franke, V. Helm, R. Drews, and D. Jansen (2021). Evidence of cascading subglacial water flow at Jutulstraumen Glacier (Antarctica) derived from Sentinel-1 and ICESat-2 measurements. Geophysical Research Letters, Vol. 48, Issue 20. https://doi.org/10.1029/2021GL094472


  • Selamat, M.B., A. H. Muhiddin, S. Yusuf and J. Jompa (2021). Toward geomorphic mapping of reef habitat by laser altimeter on ICESat-2 Satellite. IOP Conference Series: Earth and Environmental Science.  https://doi.org/10.1088/1755-1315/860/1/012080


  • Michaelides, R. J., M. B. Bryant, M. R. Siegfried, and A. A. Borsa (2021). Quantifying surface-height change over a periglacial environment with ICESat-2 laser altimetry. Earth and Space Science, Vol. 8, Issue 8. https://doi.org/10.1029/2020EA001538


  • Palm S. P., P. Selmer, J. Yorks, S. Nicholls, and E. Nowottnick (2021). Planetary Boundary Layer Height Estimates From ICESat-2 and CATS Backscatter Measurements. Frontiers in Remote Sensing, Vol. 2. https://doi.org/10.3389/frsen.2021.716951 


  • Gibbons, A., T. Neumann, D. Hancock, K. Harbeck, and J. Lee (2021). On-orbit radiometric performance on ICESat-2. Earth and Space Science, Vol. 8, Issue 10. https://doi.org/10.1029/2020EA001503


  • Magruder, L., K. Brunt, T. Neumann, B. Klotz, and M. Alonzo (2021). Passive ground-based optical techniques for monitoring the on-orbit ICESat-2 altimeter geolocation and footprint diameter. Earth and Space Science, Vol. 8, Issue 10. https://doi.org/10.1029/2020EA001414


  • Zhang, J., J. Tian, X. Li, L. Wang, B. Chen, H. Gong, R. Ni, B. Zhou, and C. Yang (2021). Leaf area index retrieval with ICESat-2 photon counting LiDAR. International Journal of Applied Earth Observation and Geoinformation,
    Vol. 103. https://doi.org/10.1016/j.jag.2021.102488


  • Magruder, L., A. Neuenschwander, and B. Klotz (2021). Digital terrain model elevation corrections using space-based imagery and ICESat-2 laser altimetry. Remote Sensing of Environment, Vol. 264. https://doi.org/10.1016/j.rse.2021.112621


  • Herzfeld, U., A. Hayes, S. Palm, D. Hancock, M. Vaughan and K. Barbieri (2021). Detection and Height Measurement of Tenuous Clouds and Blowing Snow in ICESat-2 ATLAS Data. Geophysical Research Letters, Vol. 48. https://doi.org/10.1029/2021GL093473


  • Palm, S. P., Y. Yang, U. Herzfeld, D. Hancock, A. Hayes, P. Selmer, et al. (2021). ICESat-2 atmospheric channel description, data processing and first results. Earth and Space Science, Vol. 8, Issue: 8.  https://doi.org/10.1029/2020EA001470


  • Fons, S. W., N. T. Kurtz, M. Bagnardi, A. A. Petty, and R. L. Tilling (2021). Assessing CryoSat-2 Antarctic snow freeboard retrievals using data from ICESat-2. Earth and Space Science, Vol. 8, Issue: 7. https://doi.org/10.1029/2021EA001728


  • Becker, M. K., S. L. Howard, H. A. Fricker,  L. Padman, C. Mosbeux, and M.R. Siegfried (2021). Buoyancy-driven flexure at the front of Ross Ice Shelf, Antarctica, observed with ICESat-2 laser altimetry. Geophysical Research Letters, Vol. 48, Issue: 12. https://doi.org/10.1029/2020GL091207



  • Nandy, S., R. Srinet, and H. Padalia (2021). Mapping forest height and aboveground biomass by integrating ICESat-2, Sentinel-1 and Sentinel-2 data using Random forest algorithm in northwest Himalayan foothills of India. Geophysical Research Letters, Vol. 48, Issue 14. https://doi.org/10.1029/2021GL093799


  • Babbel, B. J., C.E. Parrish, L.A. Magruder (2021). ICESat‐2 elevation retrievals in support of satellite derived bathymetry for global science applications, Geophysical Research Letters, Vol. 0 Issue:  https://doi.org/10.1029/2020GL090629.
  • Tian, X. and J. Shan (2021). Comprehensive Evaluation of the ICESat-2 ATL08 Terrain Product, IEEE Transactions on Geoscience and Remote Sensing, 1-15, doi: 10.1109/TGRS.2021.3051086.
  • Chen, Y., Z. Zhu, Y. Le, Z. Qiu, G. Chen, and L. Wang (2021). Refraction correction and coordinate displacement compensation in nearshore bathymetry using ICESat-2 lidar data and remote-sensing images, Opt. Express 29, 2411-2430. https://doi.org/10.1364/OE.409941.
  • Petty, A.A., M. Bagnardi, N. Kurtz, R. Tilling, S. Fons, T. Armitage, C. Horvat, and R. Kwok (2021). Assessment of ICESat‐2 sea ice surface classification with Sentinel‐2 imagery: implications for freeboard and new estimates of lead and floe geometry, Earth and Space Science, https://doi.org/10.1029/2020EA001491
  • Kwok, R., A.A. Petty, M. Bagnardi, N.T. Kurtz, G.F. Cunningham, A. Ivanoff, and S. Kacimi (2021). Refining the sea surface identification approach for determining freeboards in the ICESat-2 sea ice products, The Cryosphere, 15, 821–833, 2021, https://tc.copernicus.org/articles/15/821/2021/tc-15-821-2021.html.
  • Zhang, Y., Y. Pang, D. Cui, Y. Ma, and L. Chen (2021). Accuracy Assessment of the ICESat-2/ATL06 Product in the Qilian Mountains Based on CORS and UAV Data, IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021, https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9292933.
  • Campbell, B.A., (2021). ICESat-2 and the Trees Around the GLOBE student research campaign: Looking at Earth's tree height, one tree at a time, Acta Astronautica, Volume 182, May 2021, Pages 203-207, https://doi.org/10.1016/j.actaastro.2021.02.002.
  • Wang, S., P. Alexander, Q. Wu, M. Tedesco, and S. Shu, (2021). Characterization of ice shelf fracture features using ICESat-2 – A case study over the Amery Ice Shelf, Remote Sensing of Environment, 255, 112266. 10.1016/j.rse.2020.112266.
  • Thomas, N., A. P. Pertiwi, D. Traganos, D. Lagomasino, D. Poursanidis, S. Moreno, and L. Fatoyinbo (2021). Space‐Borne Cloud‐Native Satellite‐Derived Bathymetry (SDB) Models using ICESat‐2 and SENTINEL‐2, Geophysical Research Letters, Volume: 0, Issue: ja, doi.org/10.1029/2020GL092170.
  • Zhang, W., N. Xu, Y. Ma, B. Yang, Z. Zhang, X.H. Wang, and S. Li (2021). A maximum bathymetric depth model to simulate satellite photon-counting lidar performance, ISPRS Journal of Photogrammetry and Remote Sensing, Volume 174, 2021, Pages 182-197, ISSN 0924-2716, https://doi.org/10.1016/j.isprsjprs.2021.02.013.
  • Adusumilli, S., M. A. Fish, H. A. Fricker, B. Medley (2021). Atmospheric River Precipitation Contributed to Rapid Increases in Surface Height of the West Antarctic Ice Sheet in 2019, Geophysical Research Letters, Volume 48, Issue 5, ISSN 0094-8276, 03/2021, DOI: 10.1029/2020GL091076.
  • Thomas, T.C., S.B. Luthcke, T.A. Pennington, J.B. Nicholas, and D.D. Rowlands (2021). ICESat‐2 Precision Orbit Determination, Earth and Space Science, ISSN: 2333-5084, 02/2021, Volume 0, Issue Ja, DOI: 10.1029/2020EA001496.
  • Yu, Y., D.T. Sandwell, S.T. Gille, Ana B. Villas Bôas (2021). Assessment of ICESat-2 for the recovery of ocean topography, Geophysical Journal International, 2021, ggab084, https://doi.org/10.1093/gji/ggab084.
  • Walker, C.C., M. Becker, H.A. Fricker (2021). A High Resolution, Three-Dimensional View of the D-28 Calving Event from Amery Ice Shelf with ICESat-2 and Satellite Imagery, Geophysical Research Letters, 48 (3). https://doi.org/10.1029/2020GL091200.
  • Xie, H., Y. Sun, X. Liu, Q. Xu, Y. Guo, S. Liu, X. Xu, S. Liu and X. Tong (2021). Shore Zone Classification from ICESat-2 Data over Saint Lawrence Island, Marine Geodesy, DOI: 10.1080/01490419.2021.1898498.


  • Thomas, T.C. (2021). ICESat‐2 Precision Orbit Determination, Earth and space science (Hoboken, N.J.), 02/2021, ISSN: 2333-5084, Volume: 0   Issue: ja, https://doi.org/10.1029/2020EA001496.

    Lai, Y.-R.  and L. Wang (2021). Monthly Surface Elevation Changes of the Greenland Ice Sheet From ICESat-1, CryoSat-2, and ICESat-2 Altimetry Missions, IEEE Geoscience and Remote Sensing Letters, DOI: 10.1109/LGRS.2021.3058956.

    Osama, N., B. Yang, Y. Ma, and M. Freeshah (2021). A Digital Terrain Modeling Method in Urban Areas by the ICESat-2 (Generating precise terrain surface profiles from photon-counting technology), Photogrammetric Engineering & Remote Sensing, Volume 87, Number 4, April 2021, pp. 237-248(12), American Society for Photogrammetry and Remote Sensing, DOI: https://doi.org/10.14358/PERS.87.4.237.

    Bae, S., B. Helgeson, M. James, L. Magruder, J. Sipps, S. Luthke, T. Thomas (2021). Performance of ICESat‐2 Precision Pointing Determination, Earth and space science (Hoboken, N.J.), ISSN: 2333-5084, 04/2021, Volume: 8, Issue: 4, DOI: 10.1029/2020EA001478.


  • Morison, J., R. Kwok, S. Dickinson, R. Andersen, C. Peralta-Ferriz, D. Morison, I. Rigor, S. Dewey, and J. Guthrie, (2021). The Cyclonic Mode of Arctic Ocean Circulation, Journal of Physical Oceanography, Vol. 51, Issue 4, Page(s): 1053–1075, DOI: https://doi.org/10.1175/JPO-D-20-0190.1.


  • Magruder, L., T. Neumann, and N. Kurtz (2021). ICESat‐2 Early Mission Synopsis and Observatory Performance, Earth and space science, ISSN:2333-5084, May 2021, Volume: 8 Issue: 5, DOI:10.1029/2020EA001555.


  • Lu, X. , Y. Hu, Y. Yang, M. Vaughan, S. Palm, C. Trepte, A. Omar, P. Lucker, and R Baize (2021). Enabling value added scientific applications of ICESat‐2 data with effective removal of afterpulses, Earth and space science (Hoboken, N.J.), ISSN: 2333-5084, 05/2021, Volume: 0  Issue: ja, DOI: 10.1029/2021EA001729.


  • Lee, Z., M. Shangguan, R. A. Garcia, W. Lai, X. Lu, J. Wang, and X. Yan, (2021). Confidence Measure of the Shallow-Water Bathymetry Map Obtained through the Fusion of Lidar and Multiband Image Data, Journal of Remote Sensing, Vol. 2021, Article ID 9841804, 16 pages, https://doi.org/10.34133/2021/9841804.


Buzzanga, B., E. Heijkoop, B.D. Hamlington, R. S. Nerem, and A. Gardner (2021). An Assessment of Regional ICESat‐2 Sea‐Level Trends, Geophysical Research Letters, ISSN: 0094-8276, 05/2021, Volume: 48 Issue: 9, DOI: 10.1029/2020GL092327.

Dandabathula, G., S. Sitiraju, and C. Jha (2021). Morphological Profiles of Sand Dunes from ICESat-2 Geolocated Photons. Journal of Geoscience and Environment Protection, 9, 71-91. doi: 10.4236/gep.2021.92005.

Fredensborg Hansen, R.M., E. Rinne, S.L. Farrell, and H. Skourup (2021). Estimation of degree of sea ice ridging in the Bay of Bothnia based on geolocated photon heights from ICESat-2, The Cryosphere, 15, 2511–2529, 2021, https://doi.org/10.5194/tc-15-2511-2021.

Hsu, H.-J., C.-Y. Huang, M. Jasinski, Y. Li, H. Gao, T. Yamanokuchi, C.-G. Wang, T.-M. Chang, H. Ren, C.-Y. Kuo, and K.-H. Tseng (2021). A semi-empirical scheme for bathymetric mapping in shallow water by ICESat-2 and Sentinel-2: A case study in the South China Sea, ISPRS Journal of Photogrammetry and Remote Sensing, 178: 1-19, DOI: 10.1016/j.isprsjprs.2021.05.012.

Li, G., J. Guo, L. Pei, S. Zhang, X. Tang and J. Yao (2021). Extraction and Analysis of the Three-Dimensional Features of Crevasses in the Amery Ice Shelf Based on ICESat-2 ATL06 Data, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 14, pp. 5796-5806, 2021, DOI: 10.1109/JSTARS.2021.3085302.

Hu, X., X. Hao, J. Wang, G. Huang, H. Li and Q. Yang (2021). Can the Depth of Seasonal Snow be Estimated From ICESat-2 Products: A Case Investigation in Altay, Northwest China, IEEE Geoscience and Remote Sensing Letters, DOI: 10.1109/LGRS.2021.3078805.

Xu, N., X. Ma, Y. Ma, P. Zhao, J. Yang and X. H. Wang (2021). Deriving highly accurate shallow water bathymetry from Sentinel-2 and ICESat-2 datasets by a multi-temporal stacking method, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, DOI: 10.1109/JSTARS.2021.3090792.

Liu, A., X. Cheng, and Z. Chen (2021), Performance evaluation of GEDI and ICESat-2 laser altimeter data for terrain and canopy height retrievals, Remote Sensing of Environment,
Volume 264, 2021, 112571, ISSN 0034-4257, DOI: 10.1016/j.rse.2021.112571.

Xie, H. et al. (2021). A Comparison and Review of Surface Detection Methods Using MBL, MABEL, and ICESat-2 Photon-Counting Laser Altimetry Data, in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, DOI: 10.1109/JSTARS.2021.3094195.

Zhao, H., R. Xu, and G. Qiao (2021). Comparaison of CRYOSAT-2 and ICESat-2 on water level monitoring of Nam Co Lake, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2021, 527–532, DOI: 10.5194/isprs-archives-XLIII-B3-2021-527-2021.

Cui, H., R. Li, T. Hao, G. Qiao, Y. He, G. Hai, H. Xie, Y. Cheng, and B. Li (2021). Field validation of ICESat-2 data along Chinare route in East Antarctica, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2021, 443–448, DOI: 10.5194/isprs-archives-XLIII-B3-2021-443-2021.

He, Y., G. Qiao, H. Li, X. Yuan, and Y. Li (2021). Unmanned aerial vehicle derived 3D model evaluation based on ICESat-2 for ice surface miro-topography analysis in East Antarctica, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2021, 463–468, DOI: 10.5194/isprs-archives-XLIII-B3-2021-463-2021.

Siegfried, M. R., and H. A. Fricker, (2021). Illuminating active subglacial lake processes with ICESat‐2 laser altimetry, Geophysical research letters, ISSN: 0094-8276, July 2021, Volume: 0 Issue: ja, DOI:10.1029/2020GL091089.

Warner, R. C., H. A. Fricker, S. Adusumilli, P. Arndt, J. Kingslake, and J. Spergel (2021). Rapid formation of an ice doline on Amery Ice Shelf, East Antarctica, Geophysical research letters, ISSN: 0094-8276, June 2021, Volume: 0 Issue: ja, DOI: 10.1029/2020GL091095.

Bagnardi, M., N. T. Kurtz, A. A. Petty, and R. Kwok (2021). Sea Surface Height Anomalies of the Arctic Ocean From ICESat‐2: A First Examination and Comparisons With CryoSat‐2, Geophysical research letters, ISSN:0094-8276, July 2021, Volume: 48 Issue: 14, DOI:10.1029/2021GL093155.

Dandabathula, G., S.R. Sitiraju, and C. Shekhar (2021). Retrieval of building heights from ICESat-2 photon data and evaluation with field measurements, Environmental Research: Infrastructure and Sustainability, Volume 1, Number 1,  IOP Publishing Ltd., https://iopscience.iop.org/article/10.1088/2634-4505/abf820.

Yu, J. et al. (2021). Accuracy Assessment of ICESat-2 Ground Elevation and Canopy Height Estimates in Mangroves, IEEE Geoscience and Remote Sensing Letters, DOI: 10.1109/LGRS.2021.3107440.

Fernando, G. (2021). Mapping the Diversity of Agricultural Systems in the Cuellaje Sector, Cotacachi, Ecuador Using ATL08 for the ICESat-2 Mission and Machine Learning Techniques, Computational Science and Its Applications – ICCSA 2021. Lecture Notes in Computer Science, vol 12957. Springer, Cham. DOI: https://doi.org/10.1007/978-3-030-87013-3_13.

Koo, Y., R. Lei, Y. Cheng, B. Cheng, H. Xie, M. Hoppmann, N.T. Kurtz, S.F. Ackley, A.M. Mestas-Nuñez (2021). Estimation of thermodynamic and dynamic contributions to sea ice growth in the Central Arctic using ICESat-2 and MOSAiC SIMBA buoy data, Remote Sensing of Environment, Volume 267, 2021, 112730, ISSN 0034-4257, https://doi.org/10.1016/j.rse.2021.112730.

Xu, Y., H. Li, B. Liu, H. Xie, B. Ozsoy-Cicek (2021). Deriving Antarctic Sea‐Ice Thickness from Satellite Altimetry and Estimating Consistency for NASA's ICESat/ICESat‐2 Missions. Geophysical research letters, Vol. 48 Issue 20, https://doi.org/10.1029/2021GL093425.


  • 2020

    The following publications have been included in a special edition of Geophysical Research Letters entitled "The Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) On-Orbit Performance, Data Discoveries, and Early Science":

    • Luthcke, S.B., T.C. Thomas, T.A. Pennington, T.W. Rebold, J.B. Nicholas, D.D. Rowlands, A.S. Gardner, and S. Bae (2021). ICESat‐2 Pointing Calibration and Geolocation Performance, Earth and Space Science, https://doi.org/10.1029/2020EA001494.

      Armon, M., E. Dente, Y. Shmilovitz, A. Mushkin, T.J. Cohen, E. Morin, Y. Enzel (2020). Determining bathymetry of shallow and ephemeral desert lakes using satellite imagery and altimetry.  Geophysical Research Letters, https://doi.org/10.1029/2020GL087367
    • Horvat, C., E. Blachard-Wrigglesworth, A. Petty (2020). Observing waves in sea ice with ICESat-2. Geophysical Research Letters, https://doi.org/10.1029/2020GL087629
    • Kwok, R., G. Cunningham, S. Kacimi, M.A. Webster, N.T. Kurtz, A.A. Petty (2020). Decay of the snow cover over Arctic sea ice from ICESat-2 acquisitions during summer melt in 2019. Geophysical Research Letters. https://doi.org/10.1029/2020GL088209
    • Ryan, J.C., L.C Smith, S.W. Cooley, L.H. Pitcher, T.M. Pavelsky (2020). Global characterization of inland water reservoirs using ICESat-2 altimetry and climate reanalysis. Geophysical Research Letters. https://doi.org/10.1029/2020GL088543
    • Farrell, S. L., Duncan, K., Buckley, E. M., Richter‐Menge, J., & Li, R. (2020). Mapping Sea Ice Surface Topography in High Fidelity with ICESat‐2. Geophysical Research Letters, 47. https://doi.org/10.1029/2020GL090708
    • Tilling, R., N.T. Kurtz, M. Bagnardi, A.A. Petty, R. Kwok (2020). Detection of Melt Ponds on Arctic Summer Sea Ice from ICESat-2. Geophysical Research Letters, 47. https://doi.org/10.1029/2020GL090644
    • Fricker, H.A., P. Arndt, K.M. Brunt, R. Datta, Z. Fair, M.F. Jasinski, J. Kingslake, L.A. Magruder, M. Moussavi, A. Pope, J.J. Spergel, J. Stoll, B. Wouters (2020). ICESat-2 melt depth retrievals: application to surface melt on the Amery Ice Shelf, East Antarctica. Geophysical Research Letters, 47. https://doi.org/10.1029/2020GL090550
    • Brunt, K.M., B. Smith, T. Suterley, N. Kurtz, T. Neumann (2020). Comparisons of Satellite and Airborne Altimetry with Ground-Based Data from the Interior of the Antarctic Ice Sheet. Geophysical Reseach Letters, 47. https://doi.org/10.1029/2020GL090572
    • Wang, Q., S. Yi, W. Sun (2020). Continuous estimates of glacier mass balance in High Mountain Asia nased on ICESat-1,2 and GRACE/GRACE Follow-On data. Geophysical Research Letters, 47. https://doi.org/10.1029/2020GL090954

    Additional 2020 ICESat-2 Publications

    • Liu, M., S. Popescu, & L. Malambo (2020). Feasibility of Burned Area Mapping Based on ICESat-2 Photon Counting Data. Remote Sensing, 12(1), 24.  https://doi.org/10.3390/rs12010024
    • Calabia, A., I. Molina, & S. Jin (2020). Soil Moisture Content from GNSS Reflectometry Using Dielectric Permittivity from Fresnel Reflection Coefficients. Remote Sensing, 12(1), 122. https://doi.org/10.3390/rs12010122
    • Yuan, C., P. Gong, & Y. Bai (2020). Performance Assessment of ICESat-2 Laser Altimeter Data for Water-Level Measurement Over Lakes and Reservoirs in China. Remote Sensing, 12(5), 770. doi.org/10.3390/rs12050770
    • Salem, J.A., C. He, N. Sawruk, V. Litvinovich (2020). Thermally Driven Failure of ND:YVO4 Amplifier Crystals. Jouranl of the European Ceramic Society, https://doi.org/10.1016/j.jeurceramsoc.2020.02.057
    • Zhu, X., C. Wang, S. Nie, F. Pan, X. Xi, Z. Hu (2020).  Mapping forest height using photon-counting LiDAR data and Landsat 8 OLI data: A case study in Virginia and North Carolina, USA. Ecological Indicators, 114. https://doi.org/10.1016/j.ecolind.2020.106287
    • Kwok, R., S. Kacimi, M.A. Webster, N.T. Kurtz, A.A. Petty (2020). Arctic Snow Depth and Sea Ice Thickness from ICESat-2 and CryoSat-2 Freeboards: A First Examination. Journal of Geophysical Research: Oceans, 125. https://doi.org/10.1029/2019JC016008
    • Vernimmen, R, A. Hooijer, R. Akmalia, N, Fitranatanegara, D. Mulyadi, A. Yuherda, H. Andreas, S. Page (2020). Mapping deep peat carbon stock from a LiDAR based DTM and field measurements, with application to eastern SumatraCarbon Balance & Management, 15(4). https://doi.org/10.1186/s13021-020-00139-2
    • Duncanson, L., A. Neuenschwander, S. Hancock, N, Thomas, T. Fatoyinbo, M. Simard, C.A. Silva, J. Armston, S. Luthcke, M. Hofton, J.R. Kellner, R. Dubayah (2020). Biomass estimation from simulated GEDI, ICESat-2 and NISAR across environmental gradients in Sonoma County, California. Remote Sensing of the Environment, 242(1). https://doi.org/10.1016/j.rse.2020.111779
    • Dandabathula, G., M. Verma, S.R. Sitiraju (2020). Evaluation of best-fit terrain elevation of ICESat-2 ATL08 using DPGS surveyed points. Journal of Applied Geodesy. https://doi.org/10.1515/jag-2020-0003
    • Petty, A. A., N. T. Kurtz, R. Kwok, T. Markus, T. A. Neumann (2020), Winter Arctic sea ice thickness from ICESat-2 freeboardsJ. Geophys. Res. Oceanshttps://doi.org/10.1029/2019jc015764 
    • Z. Zhang, Y. Ma, S. Li, P. Zhao, Y. Xiang, X. Liu, W. Zhang (2020). Ranging performance model considerng the pulse pileup effect for PMT-based photon-counting lidars. Optics Express, 28(9). https://doi.org/10.1364/OE.386107 
    • Smith, B.E., H.A. Fricker, A. Gardner, B. Medley, J. Nilsson, F.S. Paolo, N. Holschuh, S. Adusumilli, K.M. Brunt, B. Castho, K. Harbeck, T. Markus, T. Neumann, M.R. Siegfried, H.J. Zwally (2020). Pervasive ice sheet mass loss reflects competing ocean and atmosphere processes.  Science, 368(6496), 1239-1242.  https://doi.org/10.1126/science.aaz5845
    • Lu, X., Y. Hu, Y. Yang, P. Bontempi, A. Omar, R. Baize (2020). Antarctic spring ice-edge blooms observed from space by ICESat-2. Remote Sensing of the Environment. https://doi.org/10.1016/j.rse.2020.111827
    • Albright, A. and C. Glennie (2020).  Nearshore Bathymetry from Fusion Sentinel-2 and ICESat-2 Observations. IEEE Geosciences and Remote Sensing Letters. https://doi.org/10.1109/LGRS.2020.2987778
    • Zhang, Z., N. Xu, Y. Ma, X. Liu, W. Zhang, S. Li (2020). Land and snow-covered area classification method based on the background noise for satellite photon-counting laser altimeters. Optics Express, 28(11). https://doi.org/10.1364/OE.392904
    • Li, W., Z. Niu, R. Shang, Y. Qin, L. Wang, H. Chen (2020). High-resolution mapping of forest canopy height using machine learning by coupling ICESat-2 LiDAR with Sentinel-1, Sentinel-2, and Landsat-8 data. International Journal of Applied Earth Observation and Geoinformation, 92. https://doi.org/10.1016/j.jag.2020.102163
    • Dandabathula, G., M. Verma, P. Satyanarayana, S. S. Rao (2020). Evaluation of ICEsat-2 ATL08 Data Product: Performance Assessment in Inland Water. European Journal of Environment and Earth Science, 1(3). https://doi.org/10.24018/ejgeo.2020.1.3.15
    • Xing, Y., J, Huang, A. Gruen, L. Qin (2020). Assessing the Performance of ICESat-2/ATLAS Multi-Channel Photon Data for Estimating Ground Topography in Forested Terrain. Remote Sensing, 12(2084). https://doi.org/10.3390/rs12132084.
    • Zhu, X., S. Nie, C. Wang, X. Xi, J. Wang, D. Li, H. Zhou (2020). A Noise Removal Algorithm Based on OPTICS for Photon-Counting LiDAR Data. IEEE Geoscience and Remote Sensing Letters. https://doi.org/10.1109/LGRS.2020.3003191.
    • Ma, Y., N, Xu, Z. Liu, B. Yang, F. Yang, X. Wang, S. Li (2020). Satellite-derived bathymetry using the ICESat-2 lidar and Sentinel-2 imagery datasets. Remote Sensing of the Environment, 250(1). https://doi.org/10.1016/j.rse.2020.112047
    • Dandabathula, G., S. Rao (2020). Validation of ICESat-2 Surface Water Level Product ATL13 with Near Real Time Gauge Data. Hydrology, 8(2). https://doi.org/10.11648/j.hyd.20200802.11
    • McGarry, J., C. C. Carabajal, J. L. Saba, A. R. Reese, S. T. Holland, S. P. Palm, J.A. Swinski, J. Golder, P. Liiva (2020). ICESat-2/ATLAS Onboard Flight Science Receiver Algorithms: Purpose, Process, and Performance. Earth and Space Science. https://doi.org/10.1002/essoar.10502982.
    • Carabajal, C.C., J.P. Boy (2020). ICESat-2 Altimetry as Geodetic Control. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, volume XLIII-B3-2020. https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-1299-2020.
    • Narine, L.L., S. Popescu, L. Malambo (2020). Using ICESat-2 to Estimate and Map Forest Aboveground Biomass: A First Example. Remote Sensing, 12(11), 1824. https://doi.org/10.3390/rs12111824
    • Xu, N., Y. Ma (2020). A Method to Derive Bathymetry for Dynamic Water Bodies Using ICESat-2 and GSWD Data Sets. IEEE Geoscience and Remote Sensing Letters. https://doi.org/10.1109/LGRS.2020.3019396
    • Fassoni-Andrade, A.C., R.C. Dias de Paiva, C. de Morales Rudorff, C. Barbosa, E. de Morales Novo (2020). High-resolution mapping of floodplain topography from space: A case student in the Amazon. Remote Sensing of the Environment, 251(2020), https://doi.org/10.1016/j.rse.2020.112065
    • Sun, T., J. Qi, H. Huang (2020). Discovering forest height changes based on spaceborne lidar data of ICESat-1 in 2005 and ICESat-2 in 2019: a case study in the Beijing-Tianjin-Hebei region of China. Forest Ecosystems, 7(53). https://doi.org/10.1186/s40663-020-00265-w
    • Steinvall, O., M. Bjorks (2020). Water optical properties in Scandinavian waters and airborne optical sensing. Proceedings of SPIE Volume 11538, Electro-Optical Remote Sensing XIV. https://doi.org/10.1117/12.2571124
    • Neuenschwander, A., E. Guenther, J.C. White, L. Duncanson, P. Montesano (2020). Validation of ICESat-2 terrain and canopy heights in boreal forests. Remote Sensing of Environment, 251 (2020; 112110). https://doi.org/10.1016/j.rse.2020.112110
    • Shen, X., C. Ke, Q. Wang, J. Zhang, L. Shi, X. Zhang (2020). Assessment of Arctic Sea Ice Thickness Estimates from ICESat-2 Using IceBird Measurements. IEEE Transactions on Geoscience and Remote Sensing. https://doi.org/10.1109/TGRS.2020.3022945.
    • Malambo, L. and S. Popescu (2020). PhotonLabeler: An Inter-Disciplinary Platform for Visual Interpretation and Labeling of ICESat-2 Geolocated Photon Data. Remote Sensing, 12. https://doi.org/10.3390/12193168
    • Li, T., G.J. Dawson, S.J. Chuter, J.L. Bamber (2020). Mapping the grounding zone of Larsen C Ice Shelf, Antarctica from ICESat-2 laser altimetry. The Cryosphere, 14(3629-3643). https://doi.org/10.5194/tc-14-3629-202
    • Magruder, L.A., K.M. Brunt, M. Alonzo (2020). Early ICESat-2 on-orbit Geolocation Validation Using Ground-Based Corner Cube Retro-Reflectors. Remote Sensing, 12(21), 3653. https://doi.org/10.3390/rs12213653
    • Fair, Z., M. Flanner, K.M. Brunt, H.A. Fricker, A. Gardner (2020). Using ICESat-2 and Operation IceBridge altimetry for supraglacial lake retrieval. The Cryosphere, 14(4253-4263). https://doi.org/10.5194/tc-14-4253-2020
    • Kacimi, S. and R. Kwok (2020). The Antarctic sea ice cover from ICESat-2 and CryoSat-2: freeboard, snow depth and ice thickness. The Cryosphere, 14(4453-4474). https://doi.org/10.5194/tc-14-4453-2020
    • Xu, N., Y. Ma, W. Zhang, X.H. Wang, F. Yang, D. Su (2020). Monitoring Annual Changes of Lake Water Levels and Volumes over 1974-2018 Using Landsat Imagery and ICESat-2 Data. Remote Sensing, 12(4004). https://doi.org/10.3390/rs12234004
    • Herzfeld, U., T. Trantow, M. Lawson, J. Hans, G. Medley (2020). Surface heights and crevasse morphologies of surging and fast-moving glaciers from ICESat-2 laser altimeter data: Application of the density-dimension algorithm (DDA-ice) and evaluation using airborne altimeter and Planet SkySat data. Science of Remote Sensing. https://doi.org/10.1016/j.srs.2020.100013
    • Silva, C.A., L. Duncanson, S. Hancock, A. Neuenschwander, N. Thomas, M. Hofton, L. Fatoyinbo, M. Simard, C.Z. Marshak, J. Armston, S. Luthcke, R. Dubayah (2020). Fusing simulated GEDI, ICESat-2 and NISAR data for regional aboveground biomass mapping. Remote Sensing of the Environment, 253. https://doi.org/10.1016/j.rse.2020.112234
    • Berninger, A. and F. Siegert (2020). The Potential of ICESat-2 to Identify Carbon-Rich Peatlands in Indonesia. Remote Sensing, 21(4175). https://doi.org/10.3390/rs1224417
    • Shen, X., C.Q. Ke, X. Yu, Y. Cai and Y. Fan (2020). Evaluation of Ice, Cloud, And Land Elevation Satellite-2 (ICESat-2) land ice surface heights using Airborne Topographic Mapper (ATM) data in Antarctica. International Journal of Remote Sensing, 42:7, 2556-2573, https://doi.org/10.1080/01431161.2020.1856962


  • Zhang, G., T. Yao, H. Xie, K. Yang, L. Zhu, C.K. Shum, T. Bolch, S. Yi, S. Allen, L. Jiang, W. Chen, and C. Ke (2020). Response of Tibetan Plateau lakes to climate change: Trends, patterns, and mechanisms, Earth-Science Reviews, Volume 208, 2020,103269, ISSN 0012-8252, https://doi.org/10.1016/j.earscirev.2020.103269.



    • Walker C.C., and A.S. Gardner (2019). Evolution of ice shelf rifts: Implications for formation mechanics and morphological controls. Earth and Planetary Science Letters. Vol. 526. https://doi.org/10.1016/j.epsl.2019.115764
    • Brunt, KM, Neumann, TA, & Larsen, CF (2019). Assessment of altimetry using ground-based GPS data from the 88S Traverse, Antarctica, in support of ICESat-2. The Cryosphere, 13(2), 1–12, doi:10.5194/tc-13-579-2019.
    • Crawford, CJ, van den Bosch, J, Brunt, KM, Hom, MG, Cooper, JW, Harding, DJ, Butler, JJ, Dabney, PW, Neumann, TA, Cleckner, CS, & Markus, T (2019). Radiometric calibration of a non-imaging airborne spectrometer to measure the Greenland Ice Sheet surface. Atmospheric Measurement Techniques, 12(3), 1913–1933, doi:10.5194/amt-12-1913-2019.
    • Narine, L. L., Popescu, S., Neuenshwander, A., Zhou, T., Srinivasan, S., Harbeck, K., 2019. Estimating aboveground biomass and forest canopy cover with simulated ICESat-2 data. Remote Sensing of Environment 224 1-11. https://doi.org/10.1016/j.rse.2019.01.037. Journal Article/Letter
    • Brown, M., E., Escobar, V., M., 2019. NASA’s Early Adopter Program Links Satellite Data to Decision Making.  Remote Sensing of Environment 11, 406. doi:10.3390/rs11040406. Journal Article/Letter
    • Li, Y., H. Gao, M. Jasinski, S. Zhang, and J. Stoll, 2019: Deriving High-Resolution Reservoir Bathymetry from ICESat-2 Prototype Photon-counting Lidar and Landsat Imagery. Trans. on Geoscience and Remote Sensing, in press, DOI:10.1109/TGRS.2019.2917012.
    • Parrish, C. E., L. A. Magruder, A. Neuenschwander, N. Forfinski-Sarkozi, M. Alonzo, M. Jasinski.  Validation of ICESat-2 ATLAS Bathymetry and Analysis of ATLAS's Bathymetric Mapping Performance. Remote Sensing. 2019, 11, 1634, https://doi.org/10.3390/rs11141634.
    • Neuenschwaner, A. and L. Magruder. Canopy and Terrain height retrievals with ICESat-2: A First Look.  Remote Sensing. 2019, 11, 1721. https://www.mdpi.com/2072-4292/11/14/1721/pdf.
    • Neumann, T., A. Martino, T. Markus, S. Bae, M. Bock, A. Brenner, K.M. Brunt, J. Cavanaugh, S. Fernandes, D. Hancock, K. Harbeck, J. Lee, N, Kurtz, P. Luers, S. Luthcke, L. Magruder, T. Pennington, L. Ramos-Izquierdo, T. Rebold, J. Skoog, and T. Thomas. The Ice, Cloud and Land Elevation Satellite-2 Mission: A Global Geolocated Photon Product.  Remote Sensing of the Environment.  2019, 233.  https://doi.org/10.1016/j.rse.2019.111325.
    • Smith, B.E., H.A. Fricker, N. Holschuh, A. Gardner, S. Adusumilli, K.M. Brunt, B. Csatho, K. Harbeck, A. Huth, T. Neumann, J. Nilsson, M. Siegfried.  Land ice height-retrieval algorithm for NASA's ICESat-2 photon counting laser altimeter.  Remote Sensing of the Environment. 2019, 233.  https://doi.org/10.1016/j.rse.2019.111352
    • Kwok, R., T. Markus, N. Kurtz, A. Petty, T. Neumann, S.L. Farrell, G.F. Cunningham, D. Hancock, A. Ivanoff, J.T. Wimert.  Surface height and sea ice freeboard of the Arctic Ocean from ICESat-2: Characteristics and early results.  Journal of Geophysical Research Oceans, 2019. https://doi.org/10.1029/2019JC015486
    • Kwok, R., S. Kacimi, T. Markus, N. Kurtz, M Studinger, J.G. Sonntag, S.S. Manizade, L. Boisvert, J. Harbeck.  ICESat-2 surface height and sea-ice freeboard assessed with ATM lidar acquisitions from Operation IceBridgeGeophysical Research Letters, 2019. https://doi.org/10.1029/2019GL084976
    • Martino, A.J., T. Neumann, N. Kurtz, D. Maclennan.  ICESat-2 mission overview and early performance. Proc. SPIE 11151, Sensors, Systems, and Next-Generation Satellites XXIII, 111510C.  https://doi.org/10.1117/12.2534938
    • Brunt, K. M., Neumann, T. A., & Smith, B. E. (2019). Assessment of ICESat‐2 ice sheet surface heights, based on comparisons over the interior of the Antarctic ice sheet. Geophysical Research Letters, 46, https://doi.org/10.1029/2019GL084886
    • Wang, C., X. Zhu, S. Nie, X. Xi, D. Li, W. Zheng, & S. Chen. (2019) Ground elevation accuracy verification of ICESat-2 data: a case study in Alaska, USA. Optics Express, Vol. 27, Is. 26, https://doi.org/10.1364/OE.27.038168
    • Klotz, B.W., A. Neuenschwander, L.A. Magruder. (2019) High-Resolution Ocean Wave and Wind Characteristics Determined by the ICESat-2 Land Surface Algorithm. Geophysical Research Letters, Vol. 47, Is.1, https://doi.org/10.1029/2019GL085907
    • Brêda, J. P. L. F., R. C. D. Paiva, J. M. Bravo, O. A. Passaia, D. M. Moreira (2019). Assimilation of Satellite Altimetry Data for Effective River Bathymetry. Water Resources Research, Vol. 55, Is. 9, https://doi.org/10.1029/2018WR024010
    • Csatho, B., A.F. Schenk, T. Neumann (2019). Ice Sheet Elevation Mapping and Change Detection with the Ice, Cloud and Land Elevation Satellite-2. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W13. https://doi.org/10.5194/isprs-archives-XLII-2-W13-1747-2019.
    • Lu, X., Y. Hu, and Y. Yang (2019), Ocean Subsurface Study from ICESat-2 Mission. 2019 Photonics & Electromagnetics Research Symposium - Fall (PIERS - Fall), pp. 910-918, doi: 10.1109/PIERS-Fall48861.2019.9021802.


    • Zhang, G., W. Chen, and H. Xie (2019). Tibetan Plateau's Lake Level and Volume Changes From NASA's ICESat/ICESat‐2 and Landsat Missions, Geophysical research letters, ISSN: 0094-8276, 2019, Volume: 46 Issue: 22, Page: 13107-13118, DOI: 10.1029/2019GL085032.



    • Neuenschwander, A., Pitts, K., 2018. "The ATL08 land and vegetation product for the ICESat-2 Mission," Remote Sensing of Environment 221 247-259. https://doi.org/10.1016/j.rse.2018.11.005. Journal Article/Letter
    • Kwok, R., 2018. “Arctic sea ice thickness, volume, and multiyear ice coverage: losses and coupled variability (1958–2018),” Environmental Research Letters, Vol 13, No. 10 (2018), doi.org/10.1088/1748-9326/aae3ec. Journal Article/Letter
    • Morison J., Kwok R., Dickinson S., Morison D., Peralta-Ferriz C., Andersen R., 2018. "Sea State Bias of ICESat in the Subarctic,"  IEEE Geoscience and Remote Sensing Letters 15 (2):  1144-1148. DOI: 10.1109/LGRS.2018.2834362. Journal Article/Letter
    • Popescu, S.C., Zhou, T., Nelson, R., Neuenschwander, A., Sheridan, R., Narine, L., Walsh, K. M., 2018. "Photon counting LiDAR: an adaptive ground and canopy height retrieval algorithm for ICESat-2 data," Remote Sensing of the Environment 208: 154-170. doi.org/10.1016/j.rse.2018.02.019. Journal Article/Letter
    • Magruder, L.A., Brunt, K. M., 2018. "Performance analysis of airborne photon-counting lidar data in preparation of ICESat-2​," EEE Transactions on Geoscience and Remote SensingPP(99), 1-8  10.1109/TGRS.2017.2786659.  Journal Article/Letter
    • Casasanto, V. A., Campbell, B.,  Manrique, G. A., Ramsayer, K., Markus, T., Neumann, T.,  2018. “Lasers, Penguins, and Polar Bears: Novel Outreach and Education Approaches for NASA's ICESat-2 Mission,” Acta Astronautica, 148: 396-402. doi.org/10.1016/j.actaastro.2018.04.011. Journal Article/Letter
    • Smith, B.E., A. Gardner, A. Schneider, M. Flanner (2020). Modeling biases in laser-altimetry measurements caused by scattering of green light in snow. Remote Sensing of the Environment, 215. https://doi.org/10.1016/j.rse.2018.06.012



    • Webb, C. E., Bae, S., "Precision Attitude Determination with an Extended Kalman Filter to Measure Ice-Sheet Elevation,"Journal of Guidance, Control, and Dynamics, Vol. 40, No. 9 (2017), pp. 2335-2340doi.org/10.2514/1.G002715. Journal Article/Letter

    • Kwok, R., Markus, T., 2017. “Potential basin-scale estimates of Arctic snow depth with sea ice freeboards from CryoSat-2 and ICESat-2: An exploratory analysis,” Advances in Space Research, 10.1016/j.asr.2017.09.007. Journal Article/Letter
    • Markus, T., Neumann, T., Martino, A., Abdalati, W., Brunt, K., Csatho, B., Farrell, S., Fricker, H., Gardner, A., Harding, D., Jasinski, M., Kwok, R., Magruder, L., Lubin, D., Luthcke, S., Morison, J., Nelson, R., Neuenschwander, A, Palm, S, Popescu, S, Shum., C, K., Schutz, B. E., Smith, B., Yang, Y. K., Zwally, J., 2017. “The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation,” Remote Sensing of Environment, 190: 260-273, 10.1016/j.rse.2016.12.029. Journal Article/Letter
      Download PDF
    • Brunt, K. M.,  Hawley, R. L.,  Lutz, E. R,. Studinger, M., Sonntag, J. G.,  Hofton, M. A., Andrews, L. C., Neumann, T. A., 2017. "Assessment of NASA Airborne Laser Altimetry Data Using Ground-Based GPS Data Near Summit Station," The Cryosphere, 11 (2): 681-692. 10.5194/tc-11-681-2017. Journal Article/Letter
    • Brunt, KM, Cook, W, De Marco, E, Reed, D, Neumann, T, & Markus, T (2017). MABEL Alaska 2014; Flight Report. NASA Technical Memorandum, TM–2017-219019. Download PDF

    • Cook, W, Brunt, KM, De Marco, E, Reed, D, Neumann, T, & Markus, T (2017). MABEL Iceland 2012; Flight Report. NASA Technical Memorandum, TM–2017-219023. Download PDF



    • Wang, X., Z. Pan and C. Glennie (2016). A Novel Noise Filtering Model for Photon-Counting Laser Altimeter Data. IEEE Geoscience and Remote Sensing Letters. Vol. 13, Issue 7. https://doi.org/10.1109/LGRS.2016.2555308
    • Forfinski-Sarkozi, N. A., Parrish, C. E., 2016. “Analysis of MABEL Bathymetry in Keweenaw Bay and Implications for ICESat-2 ATLAS,” Remote Sens., 8(9), 772, doi:10.3390/rs8090772. Journal Article/Letter
    • Brunt, K.M., Neumann, T.A., Amundson, J.K., Kavanaugh, J. L., Moussavi, M. S., Walsh, K. M., Cook, W.B., Markus, T., 2016. “MABEL photon-counting laser altimetry data in Alaska for ICESat-2 simulations and development,”  The Cryosphere, 10(4), 1707–1719 doi: 10.5194/tc-10-1707-2016. Journal Article/Letter
    • Glenn, N. F., Neuenschwander, A., Vierling, L. A., Spaete, L., Li, A., Shinneman, D. J., Pilliod, D. S., Arkle, R. S., Mcllroy, S. K., 2016. “Landsat 8 and ICESat-2: Performance and potential synergies for quantifying dryland ecosystem vegetation cover and biomass,”  Remote Sensing of Environment, 10(4), 1707–1719 doi.org/10.1016/j.rse.2016.02.039. Journal Article/Letter
    • Jasinski, M.; Stoll, J.; Cook, W.; Ondrusek, M.; Stengel, E., and Brunt, K., 2016.  “Inland and near-shore water profiles derived from the high-altitude Multiple Altimeter Beam Experimental Lidar (MABEL).” Brock, J.C.; Gesch, D.B.; Parrish, C.E.; Rogers, J.N., and Wright, C.W. (eds.), Advances in Topobathymetric Mapping, Models, and Applications. Journal of Coastal Research, Special Issue, No. 76, pp. 44–55. Coconut Creek (Florida), ISSN 0749-0208. doi:10.2112/SI76-005. Journal Article
    • Neuenschwander, A. L., Magruder, L. A., 2016. “The Potential Impact of Vertical Sampling Uncertainty on ICESat-2/ATLAS Terrain and Canopy Height Retrievals for Multiple Ecosystems,” Remote Sensing, doi:10.3390/rs8121039 Journal Article/Letter
    • Casasanto, V. A., Campbell, B.,  Manrique G. A., Ramsayer, K., Markus, T., Neumann, T.,  2016. “Lasers, Penguins, and Polar Bears: Novel Outreach and Education Approaches for NASA'S ICESAT-2 Mission,” 67th International Astronautical Congress (IAC), Guadalajara, Mexico, 26-30 September 2016. IAC-16,E1,7,10,x35733

       Download PDF

    • Kwok, R., Cunningham, G. F., Hoffmann, J., Markus, T.,  2016. “Testing the ice-water discrimination and freeboard retrieval algorithms for the ICESat-2 mission,” Remote Sens. Environ., 183, 13-25. 10.1016/j.rse.2016.05.011. Journal Article/Letter



    • Leigh, H. W., L. A. Magruder, C. C. Carabajal, J. L. Saba and J. F. McGarry, (2015). Development of Onboard Digital Elevation and Relief Databases for ICESat-2, IEEE Transactions on Geoscience and Remote Sensing, vol. 53, no. 4, pp. 2011-2020, April 2015, doi: 10.1109/TGRS.2014.2352277.

    • Farrell, S. K., Brunt, K.M., Ruth, J. M., Kuhn, J. M., Connor, L. N., Walsh, K. M., 2015. Sea Ice Freeboard Retrieval using Digital Photon-counting Laser Altimetry Ann. Glaciol., 56(69), 167–174. 10.3189/2015AoG69A686. Journal Article/Letter
    • Brunt, KM, Neumann, T, & Markus, T (2015). SIMPL/AVIRIS-NG Greenland 2015; Flight Report. NASA Technical Memorandum, TM-2015-217544. Download PDF




    • Brunt, K. M., Neumann, T. A., Walsh, K. M., Markus, T., 2014. "Determination of Local Slope on the Greenland Ice Sheet Using a Multibeam Photon-Counting Lidar in Preparation for the ICESat-2 Mission," IEEE Geosci. Remote Sensing Lett., 11 (5): 935-939. 10.1109/LGRS.2013.2282217.  Journal Article/Letter

    • Moussavi, M.S., Abdalati, W., Scambos, T., Neuenschwander, A., 2014. "Applicability of an Automatic Surface Detection Approach to Micro-pulse Photon-counting Lidar Altimetry Data: Implications for Canopy Height Retrieval from Future ICESat-2 Data," Int. J. Remote Sens., 35, 5263-5279. 10.1080/01431161.2014.939780. Journal Article/Letter
    • Kwok, R., Markus, T., Morison,, J., Palm, S. P., Neumann, T. A., Brunt, K. M., Cook, W. B., Hancock, D. W., Cunningham, G. F., 2014. “Profiling sea ice with a Multiple Altimeter Beam Experimental Lidar (MABEL),”  Journal of Atmospheric and Oceanic Technology, 31 (5): 1151-1168. 10.1175/JTECH-D-13-00120.1. Journal Article/Letter

    • Herzfeld, U., McDonald, B., Wallin, B., Neumann, T., Markus, T., Brenner, A., Field, C.,  2014. "Algorithm for Detection of Ground and Canopy Cover in Micropulse Photon-Counting Lidar Altimeter Data in Preparation for the ICESat-2 Mission," IEEE Transactions on Geoscience and Remote Sensing, 52 (4): 2109 - 2125. 10.1109/TGRS.2013.2258350. Journal Article/Letter



    • Awadallah, M., Ghannam, S., Abbott, A. L., Ghanem, A.,  2013. "Active Contour Models for Extracting Ground and Forest Canopy Curves from Discrete Laser Altimeter Data," Proceedings: 13th International Conference on LiDAR Applications for Assessing Forest Ecosystems (SilviLaser 2013), Beijing, China, Oct. 2013, pp. 129-136.
    • Awadallah, M., Abbott, A. L., Thomas, V., Wynne, R. H., Nelson, R., 2013. ​"Estimating Forest Canopy Height and Biophysical Parameters using Photon-counting Laser Altimetry," Proceedings: 13th International Conference on LiDAR Applications for Assessing Forest Ecosystems (SilviLaser 2013), Beijing, China, Oct. 2013, pp. 137-144. 
    • McGill, M., Markus, T., Scott, V. S., Neumann, T.A.,  2013. "The Multiple Altimeter Beam Experimental Lidar (MABEL), an airborne simulator for the ICESat-2 mission," Journal of Atmospheric and Oceanic Technology.  10.1175/JTECH-D-12-00076.1. Journal Article/Letter



    • Farrell, S. L., Markus, T., Kwok, R., Connor L., 2011. "Laser altimetry sampling strategies over sea ice," Annals of Glaciology, 52(57), 2011. 10.3189/172756411795931660. Journal Article/Letter



    • Yua, A. W., Stephen, M. A., Li, S. X., Shaw, G. B., Seas, A., Dowdye, E., Troupaki, E., Liiva, P., Poulios, D., Mascetti, K.,  2010. "Space Laser Transmitter Development for ICESat-2 Mission," Proc. of SPIE, Vol. 7578 757809, Feb 2010. 10.1117/12.843342.Journal Article/ Letter

    • Abdalati, W., Zwally, J. H., Bindschadler, R., Csatho, B., Farrell, S. L., Fricker, H. A., Harding, D., Kwok, R., Lefsky, M., Markus, T., Marshak, A., Neumann, T., Palm, S., Schutz, B., Smith, B., Spinhirne, J., Webb, C.,  2010. "The ICESat-2 Laser Altimetry Mission," Proceedings of the IEEE, Vol. 98, No. 5, pp. 735-751, May 2010. 10.1109/JPROC.2009.2034765. Journal Article/Letter

Page URL:
Share on Social Media: