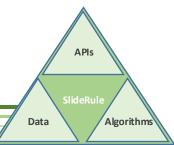
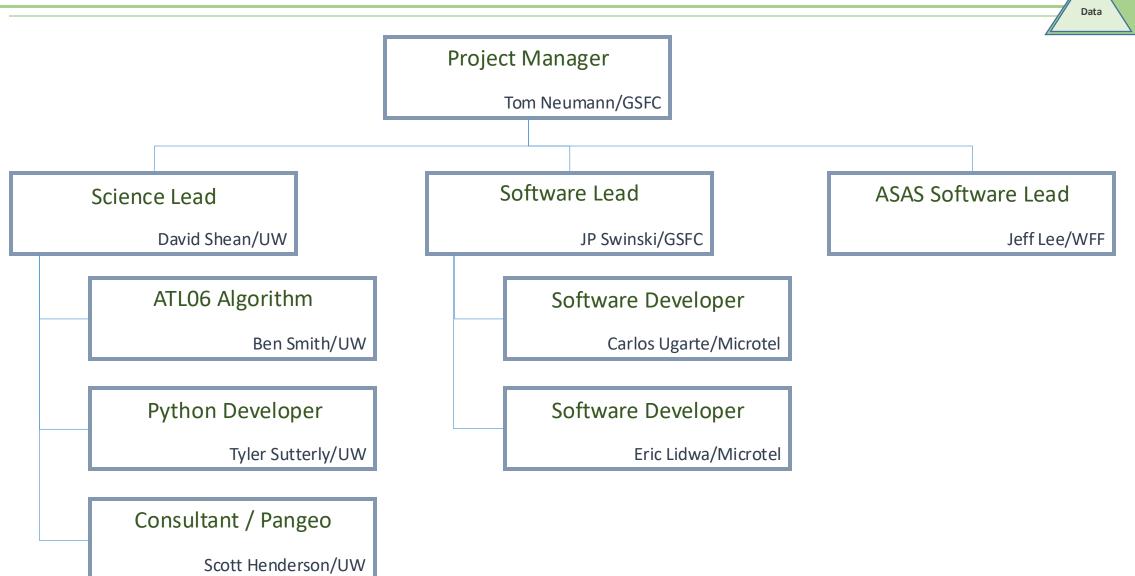
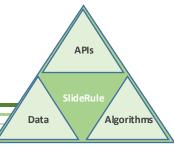


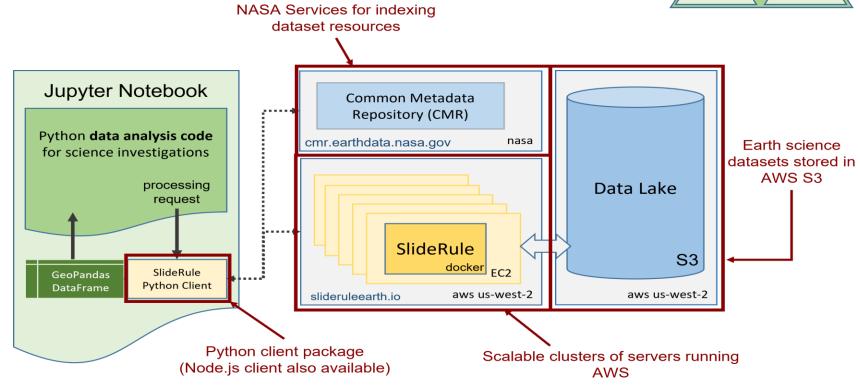
SlideRule Earth


Enabling Rapid, Scalable, Open Science


Tom Neumann, David Shean, Ben Smith, Tyler Sutterley, JP Swinski Scott Henderson, Carlos Ugarte, Eric Lidwa, Jeff Lee



The team behind SlideRule

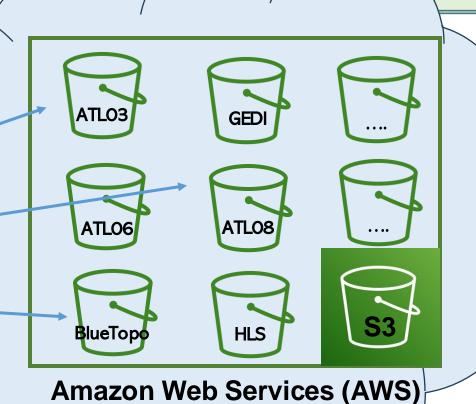


What is SlideRule in a nutshell?

SlideRule is a *public web service* REST-like APIs with for processing science data. provides researchers and other data systems with low-latency access to on-demand data *products* using processing parameters supplied at the time of the request. SlideRule runs in AWS us-west-2 and has access to ICESat-2, GEDI, Landsat, and a growing list of other datasets stored in S3. Python and Node.js clients are provided that make it easier to interact with SlideRule.

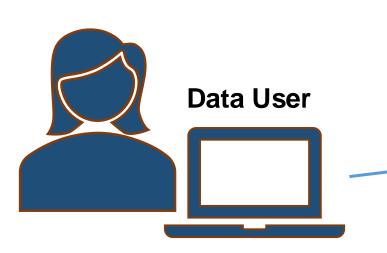


Website: slideruleearth.io


Point of Contact: jp.swinski@nasa.gov Code: github.com/slideruleearth/sliderule

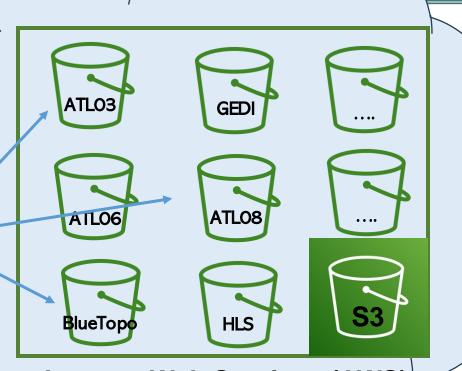
License: *BSD 3-Clause*

Accessing cloud data directly


- Challenging to work with global scale data from a laptop or single JupyterHub instance
- Must know format of different datasets (how do let acquisition date from ArcticDEM rasters?)
- Common compute intensive operations needed to make data ready to use (point-cloud to elevation)

Simple Storage Service (S3)

Algorithms


Accessing cloud data with SlideRule

- Efficient subsetting services for combining data multiple sources into a single response
- On-demand processing next to the data for generating customized data products using parameters supplied in the user's request.

Algorithms

Amazon Web Services (AWS)
Simple Storage Service (S3)

SlideRule and ATL24 (coming April 2025)

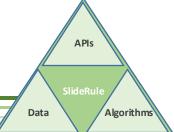
APIs

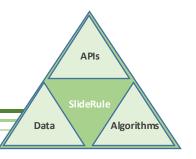
SlideRule

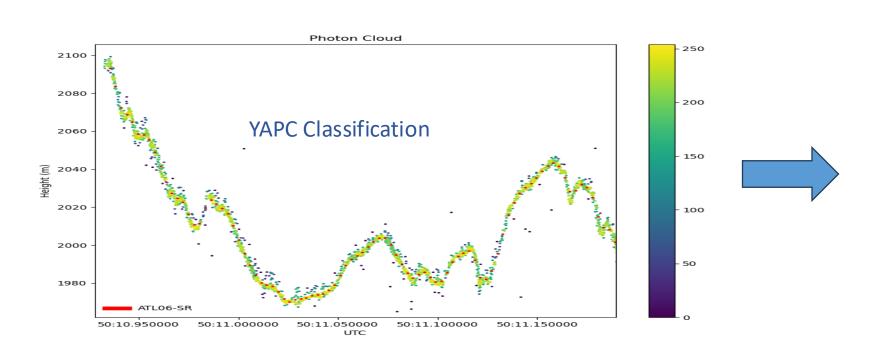
Data

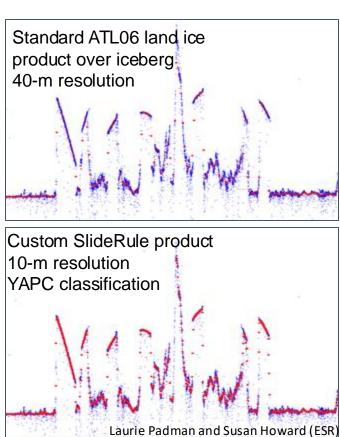
Algorithms

 Collaboration with University of Texas (Lori Magruder) and Oregon State University (Chris Parrish)




- Classified ICESat-2 photon cloud (ATL03) for bathymetry
- Generated the global data product by running the algorithms designed and implemented by UT Austin and OSU.
- Provide following services:
 - Direct access to ATL24 granules in S3
 - Efficient subsetting of multiple ATL24 granules to a region of interest
 - Customized runs of same algorithms that generated ATL24 to tailor the results to your specific region and application
 - Combine and filter ATL03 photon cloud with ATL24 classifications and run other algorithms on the results e.g., ATL06 surface fitter


A "Hello World" example




```
import {core,h5coro,icesat2} from '../sliderule/index.js';
# import (1)
from sliderule import icesat2
                                                                                                                   import http from 'http'
                                                                                                                   core.init({domain:"localhost", organization: null, protocol: http});
# region of interest (2)
grand mesa = [ \{"lon": -108.3435200747503, "lat": 38.89102961045247\}, 
                                                                                                                   icesat2.atl06p(
                                                                  delta_time rms_misfit
                                                                                        distance at spot n fit photons w surface window final
                                                                                                                                        h mean dh fit dx cycle dh fit dy rgt segment id
                                                                                                                                                                                                geometry
                                                                                                                                                                            215745 POINT (-108.28629 38.88959)
                            2018-10-17 22:31:17.350047904
                                                      0 0.098879 2.505068e+07
                                                                            0.287631 4.326639e+06 60
                                                                                                                              3.000000 1826.151552 0.019818
                                                      0 0.028634 2.505068e+07
                                                                            0.244501 4.326659e+06 60
                                                                                                                                                                            215746 POINT (-108.28631 38.88977)
                            2018-10-17 22:31:17.352875032
                                                                                                                              3.000000 1826.569174 0.021436
                                                                                                                                                                 0.0 295
# initialize (3)
                            2018-10-17 22:31:17.355689608
                                                                                                                              3.000000 1827.168388 0.034429
                                                                                                                                                                            215747 POINT (-108.28633 38.88995)
icesat2.init("sli
                                                                                                                                                                            215748 POINT (-108.28636 38.89013)
                            2018-10-17 22:31:17.358488680
                                                                            0.223318 4.326700e+06 60
                                                      0 0.026843 2.505068e+07
                                                                                                                                                                 0.0 295
                                                                                                                                                                            215749 POINT(-108.28638 38.89031) th, result[0]),
                            2018-10-17 22:31:17.361279056
                                                      0 0.032435 2.505068e+07
                                                                            0.243411 4.326720e+06 60
                                                                                                                              3.000000 1827.841449 -0.013322
# processing para
parms = {
      "poly": grand
                           2022-08-09 04:05:06.945962944
                                                                                                                                                                            217285 POINT (-108.18878 39.15660)
      "srt": icesat
                            2022-08-09 04:05:06.947338272
                                                      4 0.066863 1.452531e+08
                                                                            0.664648 4.357608e+06 60
                                                                                                                              3.000000 1747.700218 -0.036374
                                                                                                                                                                 0.0 737
                                                                                                                                                                            217291 POINT (-108.15208 39.16045)
      "cnf": icesat
                            2022-08-09 04:05:06.950151072
                                                      4 0.133912 1.452531e+08
                                                                           1.162784 4.357628e+06 60
                                                                                                                                                                            217292 POINT (-108.15211 39.16063)
                                                                                                                              3.000000 1746.934890 -0.030975
      "len": 40.0,
                            2022-08-09 04:05:06.952958176
                                                      4 0.212574 1.452531e+08
                                                                           1.646093 4.357648e+06 60
                                                                                                                              3.543788 1746.139887 -0.062201
                                                                                                                                                                 0.0 737
                                                                                                                                                                            217293 POINT (-108.15213 39.16081)
      "res": 20.0,
      "maxi": 1
                                                                                                                                                                            217294 POINT (-108.15215 39.16099)
                            2022-08-09 04:05:06.955760224
                                                      4 0.171126 1.452531e+08 1.310574 4.357668e+06 60 1
                                                                                                                              4.766557 1744.744138 -0.108425
                                                                                                                                                                 0.0 737
                           245864 rows x 16 columns
# make request (5)
gdf = icesat2.at106p(parms)
```

A custom classifier example

Global Iceberg Detection
Susan Howard, Earth and Space Research
(ESR) Institute

A raster-sampling example

```
Data
                 Algorithms
```

'/vsis3/pgc-opendata-dems/arcticdem/strips/s2s041/2m/n65w047/SETSM_s2s041_WV01_20190818_102001008EBDEE00_102001008B650400_2m_lsf_seg1_dem.tif'

'/vsis3/pgc-opendata-dems/arcticdem/strips/s2s041/2m/n65w047/SETSM_s2s041 WV03 20151020 10400100125F0F00 104001001298F100 2m_lsf seg1_dem.tif' '/vsis3/pgc-opendata-dems/arcticdem/strips/s2s041/2m/n65w047/SETSM_s2s041_wV02_20170724_103001006D472600_103001006E241A00_2m_lsf_seg2_dem.tif' /vsis3/pgc-opendata-dems/arcticdem/strips/s2s041/2m/n65w047/SETSM s2s041 WV01 20160926 102001005377FC00 10200100569CB700 2m lsf seq1 bitmask.tif //vsis3/pgc-opendata-dems/arcticdem/strips/s2s041/2m/n65w047/SETSM s2s041 WV01 20151018 1020010045822800 10200100479AFE00 2m lsf seg1 bitmask.tif /vsis3/pgc-opendata-dems/arcticdem/strips/s2s041/2m/n65w047/SETSM_s2s041_WV01_20170505_102001006213BD00_1020010060D46800_2m_lsf_seg1_bitmask.tif

'/vsis3/pgc-opendata-dems/arcticdem/strips/s2s041/2m/n65w047/SETSM s2s041 WV03 20210315 1040010066A5D200 104001006770A700 2m lsf seg13 bitmask.tif '/vsis3/ggc-opendata-dems/arcticdem/strips/s2s041/2m/n65w047/SETSM s2s041 WV03 20210315 1040010066A5D200 104001006770A700 2m lsf seq14 dem.tif'

'/vsis3/pgc-opendata-dems/arcticdem/strips/s2s041/2m/n65w047/SETSM_s2s041_WV03_20170806_104001003148F400_104001002FC8AD00_2m_lsf_seg1_bitmask.tif '/vsis3/pgc-opendata-dems/arcticdem/strips/s2s041/2m/n65w047/SETSM_s2s041_wV03_20170806_104001003148F400_104001002FC8AD00_2m_lsf_seg1_dem.tif' /vsis3/pgc-opendata-dems/arcticdem/strips/s2s041/2m/n65w047/SETSM s2s041 WV01 20150918 1020010042926D00 10200100438AAA00 2m lsf seg2 dem.tif' '/vsis3/pqc-opendata-dems/arcticdem/strips/s2s041/2m/n65w047/SETSM s2s041 WV01 20120402 102001001A8F1B00 1<u>02001001A93FB00 2m lsf seq1 dem.tif</u>'

'/vsis3/pgc-opendata-dems/arcticdem/strips/s2s041/2m/n65w047/SETSM_s2s041_WV03_20210315_104001006645D200_104001006770A700_2m_lsf_seg11_dem.tif /vsis3/pgc-opendata-dems/arcticdem/strips/s2s041/2m/n65w047/SETSM_s2s041_WV01_20160926_102001005377FC00_10200100569CB700_zm_lsf_eg1_dem.tif

'/vsis3/pgc-opendata-dems/arcticdem/strips/s2s041/2m/n65w047/SETSM_s2s041_WV02_20191026_103001009C22C400_103001009CC8F200_2m_lsf_seg1_dem.tif' '/vsis3/pgc-opendata-dems/arcticdem/strips/s2s041/2m/n65w047/SETSM s2s041 WV02 20191026 103001009B931A00 103001009CA1C200 2m lsf segl bitmask.ti

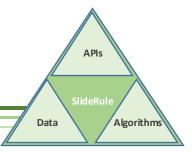
'/vsis3/pgc-opendata-dems/arcticdem/strips/s2s041/2m/n65w047/SETSM_s2s041 WV01_20151018_1020010045B22800_10200100479AFE00_2m_lsf_seg1_dem.tif' /vsis3/pgc-opendata-dems/arcticdem/strips/s2s041/2m/n65w047/SETSM s2s041 WV01 20170612 10200100618B7200 10200100612AED00 2m lsf seol bitmask.tif '/vsis3/pgc-opendata-dems/arcticdem/strips/s2s041/2m/n65w047/SETSM_s2s041_WV03_20151020_10400100125F0F00_104001001298F100_2m_lsf_segl_bitmask.tif '/vsis3/pgc-opendata-dems/arcticdem/strips/s2s041/2m/n65w047/SETSM_s2s041_WV03_20210315_1040010066A5D200_1040010066770A700_2m_lsf_seg11_bitmask.tif /vsis3/pgc-opendata-dems/arcticdem/strips/s2s041/2m/n65w047/SETSM_s2s041_WV02_20170214_1030010064C30800_1030010064567600_2m_lsf_seg1_dem.tif'

//vsis3/pqc-opendata-dems/arcticdem/strips/s2s041/2m/n65w047/SETSM s2s041 WV02 20191026 103001009C22C400 103001009CC8F200 2m lsf seq1 bitmask.tif /vsis3/pgc-opendata-dems/arcticdem/strips/s2s041/2m/n65w047/SETSM s2s041 WV02 20170729 103001006EAACB00 103001006D208B00 2m lsf seg1 dem.tif', /vsis3/pgc-opendata-dems/arcticdem/strips/s2s041/2m/n65w047/SETSM_s2s041_WV02_20170724_103001006D472600_103001006E241A00_2m_lsf_seg2_bitmask.tif /vsis3/pgc-opendata-dems/arcticdem/strips/s2s041/2m/n65w047/SETSM_s2s041_WV03_20210315_1040010066A5D200_104001006770A700_2m_tsf_seg13_dem.tif

/ysis3/pgc-opendata-dems/arcticdem/strips/s2s041/2m/n65w047/SETSM s2s041 WV02 20170214 1030010064C30800 1030010064567600 2m lsf seq1 bitmask.tif //vsis3/pqc-opendata-dems/arcticdem/strips/s2s941/2m/n65w047/SETSM s2s041 WV01 20211006 1020010088BA0100 10200100B9218100 2m lsf seq1 dem.tif' vsis3/pgc-opendata-dems/arcticdem/strips/s2s041/2m/n65w047/SETSM_s2s041_WV01_20170612_10200100618B7200_10200100612AED00_2m_isf_seg1_dem.tif

'/vsis3/pqc-opendata-dems/arcticdem/strips/s2s041/2m/n65w047/SETSM s2s041 WV03 20210315 1040010066A5D200 104001006770A700 2m lsf seq14 bitmask.tif //wsis3/pgc-opendata-dems/arcticdem/strips/s2s041/2m/n65w047/SETSM_s2s041_WV01_20190818_102001008EBDEE00_102001008B650400_2m_lsf_seg1_bitmask.tif

```
parms = { "poly": region of interest["poly"],
                                                                                                                                                                                                               12: '/vsis3/pgc-opendata-dems/arcticdem/strips/s2s041/Zm/n65w047/SETSM_s2s041_WV02_20170729_103001006EAACB00_103001006D208800_2m_lsf_seg1_bitmask.tif
0: '/vsis3/pgc-opendata-dems/arcticdem/strips/s2s041/Zm/n65w047/SETSM_s2s041_WV01_20120402_102001001ABF1800_102001001A93F800_2m_lsf_seg1_bitmask.tif
                 "cnf": "atl03 high",
                 "ats": 10.0,
                 "len": 40.0,
                 "res": 120.0,
                 "time start": '2020-01-01',
                 "time end":'2021-01-01',
                 "samples": {"strips": {"asset": "arcticdem-strips", "with flags": True}} }
gdf = icesat2.atl06p(parms)
```


Print Out File Directory

When a GeoDataFrame includes samples from rasters, each sample value has a file id that is used to look up the file name of the source raster for that val

'/vsis3/pgc-opendata-dems/arcticdem/strips/s2s041/2m/n65w047/SETSM_s2s041_WV02_20191026_103001009B931A00_103001009CA1C200_2m_lsf_seg1_dem.tif' '/vsis3/pgc-opendata-dems/arcticdem/strips/s2s041/2m/n65w047/SETSM s2s041 WV01 20211006 1020010088BA0100 1020010089218100 2m lsf segl bitmask.tif
'/vsis3/pgc-opendata-dems/arcticdem/strips/s2s041/2m/n65w047/SETSM s2s041 WV01 20170505 102001006213BD00 10200100600146800 2m lsf segl dem.tif', gdf 2: '/vsis3/pgc-opendata-dems/arcticdem/strips/s2s041/2m/n65w047/SETSM_s2s041_WV01_20150918_1020010042926D00_10200100438AAA00_2m_lsf_seg2_bitmask.

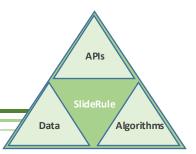
]:	e n_fit_photor	is h_	sigma	rgt	region	h_mean	y_atc	rms_misfit	dh_fit_dx	pflags	w_surface_window_final	x_atc	geometry	strips.time	strips.flags	strips.file_id	strips.value
	1 1	1 0.1	09261	658	3	2275.533651	-1364.037598	0.107745	-0.012619	0	3.0	7303654.0	POINT (-46.65997 65.51029)	[1017414743.0, 1126629403.0, 1158946234.0, 117	[0, 4, 0, 0, 0, 4, 0, 0, 0, 0, 0]	[1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21]	[2277.453125, 2272.9453125, 2271.671875, 2274
	1 22	7 0.0	08063	658	3	2263.052227	1790.479004	0.121384	-0.000610	0	3.0	7302232.5	POINT (-46.72430 65.49448)	[1017414743.0, 1126629403.0, 1158946234.0, 118	[0, 4, 0, 4, 0, 0, 4, 0, 0, 0, 0]	[1, 3, 5, 9, 29, 27, 11, 13, 17, 19, 21]	[2265.4140625, 2260.1484375, 2259.328125, 2264
	1 1	2 0.0	52065	658	3	2272.956743	-1362.035522	0.090217	-0.008033	0	3.0	7304855.0	POINT (-46.66288 65.52099)	[1017414743.0, 1126629403.0, 1158946234.0, 117	[0, 4, 0, 0, 0, 4, 0, 0, 0, 0, 0]	[1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21]	[2275.21875, 2269.796875, 2269.0703125, 2271.6
	1 8	1 0.0	18742	658	3	2262.851026	1790.565308	0.129675	-0.000366	0	3.0	7302352.5	POINT (-46.72457 65.49547)	[1017414743.0, 1126629403.0, 1158946234.0, 118	[0, 4, 0, 4, 0, 0, 4, 0, 0, 0, 0]	[1, 3, 5, 9, 29, 27, 11, 13, 17, 19, 21]	[2265.21875, 2260.3125, 2258.9453125, 2264.015
	1 6	3 0.0	18720	658	3	2272.678267	-1361.838745	0.148493	0.000223	0	3.0	7304975.0	POINT (-46.66318 65.52206)	[1017414743.0, 1126629403.0, 1158946234.0, 117	[0, 4, 0, 0, 0, 4, 0, 0, 0, 0, 0]	[1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21]	[2274.5546875, 2269.8359375, 2268.7578125, 227

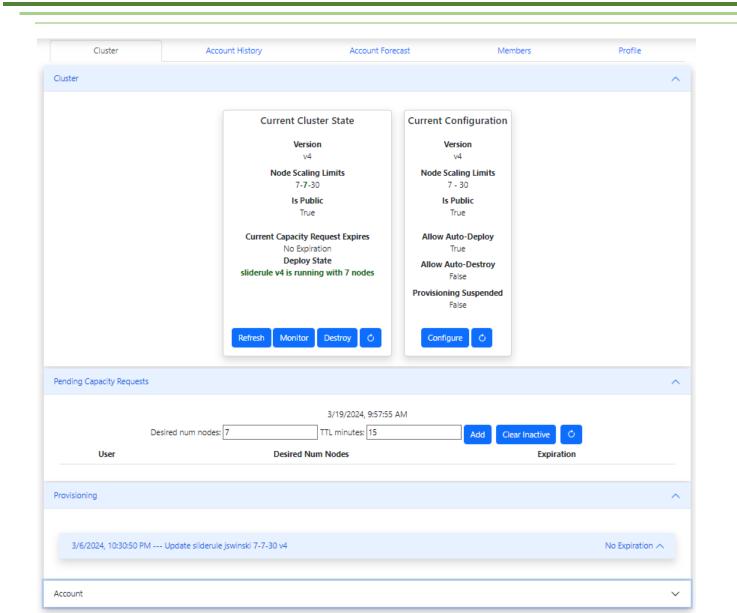
An ancillary data and geoparquet example


```
# Initialize SlideRule
icesat2.init("slideruleearth.io", verbose=True, loglevel=logging.INFO, organization='utexas', desired nodes=20, time to live=60)
# SlideRule ATL08/PhoREAL Parameters
parms = {
    "t0": f'2023-01-01T00:00:00Z',
    "t1": f'2023-12-31T00:00:00Z',
    "poly": sliderule.toregion(geometry)["poly"]
    "srt": icesat2.SRT LAND,
    "len": 30,
    "res": 30.
    "pass invalid": True,
    "atl08 class": ["atl08 ground", "atl08 canopy", "atl08 top of canopy"],
    "atl08 fields": ["sigma topo", "segment landcover", "canopy/segment cover"],
    "phoreal": {"binsize": 1.0, "geoloc": "center", "above classifier": True, "use abs h": False, "send waveform": False},
    "output": {
        "asset": "sliderule-stage",
        "path": 'boreal 2023 tile'
        "format": "parquet",
        "as geo": True,
        "ancillary": ["sigma topo", "segment landcover", "segment cover",],
        "open on complete": False
# Make ATL08/PhoREAL Request
atl08 = icesat2.atl08p(parms, keep id=True)
```

Datasets supported by SlideRule

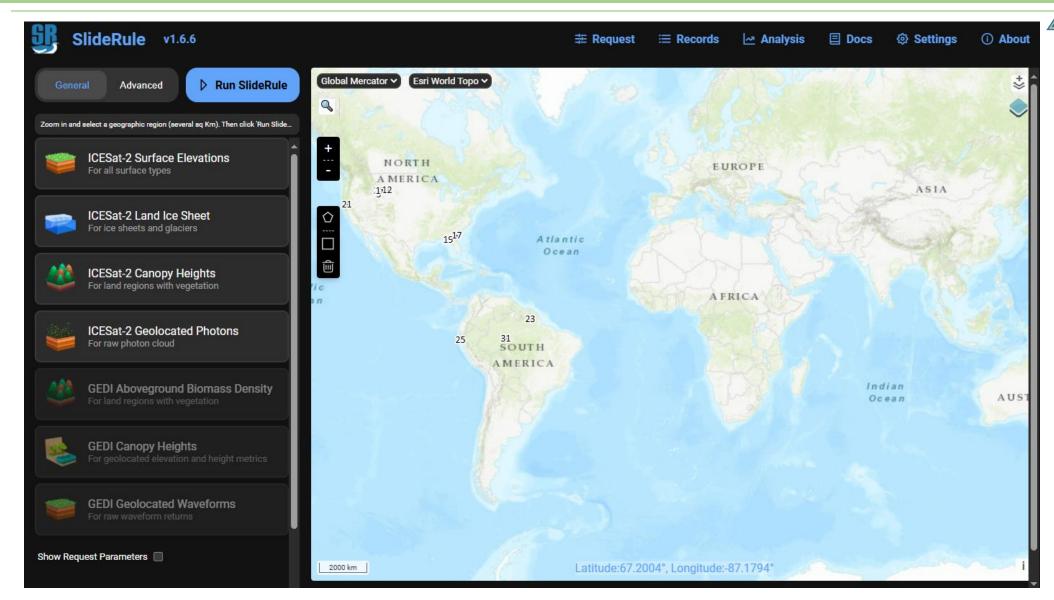
	APIs
Data	SlideRule Algorithms

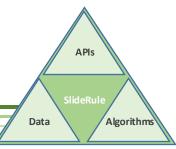

Product	Description				
icesat2-atl03	Global Geolocated Photon Data				
icesat2-atl06	Land Ice Height				
icesat2-atl08	Land and Vegetation Height				
icesat2-atl09	Calibrated Backscatter Profiles and Atmospheric Layer Characteristics				
icesat2-atl13	Inland Water Surface Height				
icesat2-atl24	Coastal and Nearshore Bathymetry				
gedil4a	Footprint Level Above Ground Biomass Density				
gedil4b	Gridded Above Ground Biomass Density				
gedil3-elevation [-stddev]	Land Surface Metrics – Land Elevation				
gedil3-canopy [-stddev]	Land Surface Metrics – Canopy Elevation				
gedil3-counts	Valid Laser Footprints per Grid Cell				
gedil2a	Geolocated Elevation and Height Metrics				
gedil1b	Geolocated Waveforms				


Datasets supported by SlideRule (cont.)

		APIs
		SlideRule
\angle	Data	Algorithms

Product	Description				
merit-dem	Multi-Error-Removed Improved-Terrain DEM				
swot-sim	Simulated (pre-launch) SWOT data				
usgs3dep-1meter-dem	USGS 3D Elevation Program 1m DEM				
esa-worldcover-10meter	Global Landcover Map				
meta-globalcanopy-1meter	Global Canopy Height Map				
gebco-bathy	General Bathymetric Chart of the Oceans				
bluetopo-bathy	Curated Collection of High-Resolution Seafloor Models for U.S.				
landsat-hls	Harmonized Landsat Sentinel-2				
arcticdem-mosaic	Arctic Digital Surface Model (mosaic)				
arcticdem-strips	Arctic Digital Surface Model (source strips)				
rema-mosaic	Reference Elevation Model of Antarctica (mosaic)				
rema-strips	Reference Elevation Model of Antarctica (source strips)				
viirsj1-s3	8-day Average Global Turbidity				


Using a private SlideRule cluster



- Control provisioning and size of cluster from your Python script
- Authenticated access
- Auto-tear-down to save costs
- Multiple users of a private cluster can stack capacity requests
- View historical costs and future forecasts

SlideRule Web Client Pre-Release Demo

