Principles of Space-Based Bathymetry Concepts, Capabilities, Limitations, and Methods

Agenda:

- Background/Introduction
- Methodologies
- Sensors
- Capabilities and Limitations
- Conditions & Considerations
- Role of ICESat-2

Introduction: Relevant Experience

Organizational Background:

- **TCarta** is a **Hydrospatial** & Marine **Remote Sensing** company, located in Denver, CO, USA
- Under the ICESat-2 Early Adopter & Applied Users Programs and NSF SBIR grant (2019-2021), we have worked to expand the coastal bathymetry applications of ICESat-2 since Fall, 2018

My Background:

- 13-year geospatial career began as a US Army Infantryman and Company Intelligence Support Team (CoIST) leader, conducting kinetic operations, intelligence preparation of the battlefield and sensitive site exploitation
- At TCarta, focus on development of innovative marine remote-sensing technologies and hydrospatial data processing utilities, in addition to providing capacity building training to hydrographic offices and academic institutions.

ICESat-2 Early Adopter/Applied Users Program (2019-Present)

SBIR Phase 1 & 2 (2018-2022)

SBIR Phase 1 & 2 (2018-2022)

SBIR Phase 1 (2024 - 2025)

Tech Accelerator Cohort 3 (2022)

Introduction: Marine Remote Sensing; A Multidisciplinary Domain

Introduction: History of Satellite-Derived Bathymetry

In 1975, NASA & Jacques Cousteau calculated bathymetry to a depth of 22m in the Bahamas using Landsat 1.

- Cousteau and dive teams collected water column characteristics, seafloor reflectivity, atmospheric conditions and other relevant in-situ measurements, coinciding with the Landsat-1 multispectral imagery collection.
- The in-situ data and Landsat 1 imagery was used to estimate depth using a radiative transfer model over the study area.

Introduction: Broad Methodologies

Marine Remote Sensing: Commonly Utilized Sensors

Multispectral | Hyperspectral | Space-Based LiDAR

Aerial Platforms

UAV / Drone Sensors

Space-Based Sensors

Satellite-Derived Bathymetry: Methods & Algorithms

Satellite-Derived Bathymetry: Basic "Ingredients"

Satellite Derived Bathymetry (SDB): exploits the inherent relationship between light attenuation through water and benthic reflectance to derive depth. The same core concepts can be applied to multispectral imagery collected using UAV & Aerial platforms

Satellite-Derived Bathymetry: Comparison of Common Methods

Satellite-Derived Bathymetry: Value/Limitations/Capabilities

Value of SDB:

- No mobilization of equipment or personnel
- Reduced risk to environment
- Highly Repeatable
- Highly Scalable to survey broad areas
- Fraction of cost of airborne survey

Capabilities/Limitations:

- Capable of deriving depths up to 30 meters in ideal conditions, variable/limited depths in turbid waters
- Generally requires benthic reflectance present in source imagery, occlusion of the seafloor due to various factors such as turbidity, specular reflection, clouds, and anthropogenic activity limit viability.

Satellite-Derived Bathymetry: Environmental Factors

Positive Environmental Factors:

Clear, calm water within atoll: no river discharge; generally cloud-free

Negative Environmental Factors:

Equatorial Solar glare / glint; Wave action on outer reef edge; clouds & shadows; turbidity in channels

Satellite-Derived Bathymetry: Sensor Radiometric Resolution

*Non-visible bands are primarily used for delineation & mitigation of detractive high-reflectance features such as land/vessels/clouds

Туре	# of bands	Bandwidth (FWHM)	Wavelength Range
RGB	3	~ 50-70 nm	Red (700-635 nm) Green (560-520 nm) Blue (450-500 nm)
Multispectral	5-20	~ 15-35 nm	Visible + Infrared
Hyperspectral	100+	< 10 nm	400-2500 nm

Satellite-Derived Bathymetry: Sensor Radiometric Resolution

Satellite-Derived Bathymetry: Light Attenuation

Satellite-Derived Bathymetry: Spatial Resolution

Satellite-Derived Bathymetry: Atmospheric Correction/Compensation

~90% of the signal received by optical satellite sensors is due to atmospheric path radiance (absorption & scattering in the atmosphere).

Figure: Fig. 1. Contributions to the total upwelling radiance above the sea surface, L_u . Yellow arrows are the sun's unscattered beam; orange arrows are atmospheric path radiance L_a ; red is surface-reflected radiance L_r ; green is water-leaving radiance L_w . Thick arrows represent single-scattering contributions; thin arrows illustrate multiple scattering contributions.

Figure: Fig. 2. Example at-sensor radiances L_u for different sensor altitudes. The water-leaving radiance and surface-reflected radiance (not shown) are the same in all cases.

Satellite-Derived Bathymetry: Atmospheric Correction/Compensation

Satellite-Derived Bathymetry: Specular Reflection/Sun Glint

Sun-sensor geometry, spatial resolution, and sea-surface conditions all contribute to the likelihood of sun glint or specular reflection present in earth-observation imagery.

There are multiple methodologies for the correction or mitigation of sun glint. One of the more common algorithms is the Hedley Method, which models differences between visible and infrared wavelengths to correct for the contribution of specular reflection.

Satellite-Derived Bathymetry: Specular Reflection/Sun Glint

Satellite-Derived Bathymetry: Detractive High Reflectance Mitigation

One method is the use of a normalized difference water index (NDWI) for extracting land and clouds. NDWI = (Green-NIR)/(Green+NIR)

Satellite-Derived Bathymetry: In Situ / Ground Truth

Leadline/Nautical Charts

Uncrewed Underwater or Surface Vessels

ICESat-2: Solution to the "in situ" problem

ICESat-2 carries a single instrument – the **A**dvanced **T**opographic **L**aser **A**ltimeter **S**ystem, or ATLAS.

ATLAS measures the travel times of laser pulses to calculate the distance between the spacecraft and Earth's surface (https://icesat-2.gsfc.nasa.gov/space-lasers)

The ATL03 Geolocated Photon Data product is used to obtain space-based bathymetric measurements.

For bathymetric applications, ATL03 data is converted to orthometric heights. Bathymetric photon returns are corrected for water-column refraction and ocean tides

ICESat-2: Solution to the "in situ" problem

Depth Range	+1.16m - 29.41m	
# Data Points	28,747	
RMSE	0.48m	
MAE	0.33m	
DOI	29 Nov 2018, 28 Feb 2019, 29 Mar 2019, 30 May 2019	
Vertical Datum	LAT NOAA	
<u>In Situ Metadata</u>		
Source	MBES/LIDAR PIFSC, CRED, JIMAR, NAVO	
DOI	2001-2007	
Horizontal Resolution	5m	
Vertical Datum	MLLW (Source) LAT (Converted)	
Depth	Profile: SBL In Situ DEM	
E -4 -8 -12 0 1,000	• TCarta • In Situ 2,000 3,000 4,000	
	Distance (m)	

ICESat-2: Use-Cases for Space-Based Hydrography

- Calibrate/train empirical regression models
- Validate or corroborate SDB results
 - Vertical uncertainty modelling
- Change detection/shoal detection
- Sea surface topography

- Adjustment/calibration of dependent variables
 - E.g. aerosol optical thickness/density
- Optically shallow water delineation
- Ocean Color measurements
- Shoreline delineation

$$R_{\rm rs}(\theta,\phi,\lambda) \equiv \frac{L_w({\rm in \ air},\theta,\phi,\lambda)}{E_d({\rm in \ air},\lambda)} \quad ({\rm sr}^{-1}) \ .$$
$$R(\lambda) = f/Q \frac{b_b(\lambda)}{a(\lambda)+bb(\lambda)}$$

$$\begin{split} \mathsf{a}(\lambda) &= \mathsf{a}_{\mathsf{w}}(\lambda) + \mathsf{a}_{\mathsf{phyt}}(\lambda) + \mathsf{a}_{\mathsf{NAP}}(\lambda) + \mathsf{a}_{\mathsf{CDOM}}(\lambda) \\ \mathsf{b}_{\mathsf{b}}(\lambda) &= \mathsf{b}_{\mathsf{bw}}(\lambda) + \mathsf{b}_{\mathsf{bp}}(\lambda) \end{split}$$

$$R(\lambda) = f/Q \frac{b_w(\lambda) + A_{bbp} b_{bp}^*(\lambda)}{a_w(\lambda) + A_{phyt} a_{phyt}^*(\lambda) + A_{NAP} a_{NAP}^*(\lambda) + A_{CDOM} a_{CDOM}^*(\lambda) + b_w(\lambda) + A_{bbp} b_{bp}^*(\lambda)}$$