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Detection of Atmospheric Layers and Surface Using a Density-

Dimension Algorithm (Code Version v111.0)

0 Versions, Source References and Change Logs

0.1 Citation

Part I refers to ICESat-2 Algorithm Theoretical Basis Document for the Atmosphere, Part I: Level 2 and

Level 3 Data Products ( , ). This document may be cited as
(2019).

ATBD v5.0 of 2015-06-04 is the first version where part I and part II were compiled separately.

0.2 Version v10.0, Source Reference and Change Log

Source Reference

The ATBD Part II version v10.0 of 2019-05-06 ( , ) uses

atbd.atmos.icesat2.20190506.v10.windex.nodraftv2.tex
and is based on Geomath developer code version v112.0 of of April 2019 for data analysis.

This ATBD is referenced as ( ), for the full citation, see the reference section.
This is the ATBD version that accompanies the first public release of ICESat-2 data products, which
includes atmospheric data products ATL04 and ATL09.

The corresponding Part I is ( , ), for the full citation, see the reference section.

[Reference needs to be updated for public release May 2019 version.]

Change Log for ATBD Atmosphere, Part II, v10.0 (compared to v9.0
Code Change Requirements for SIPS/ASAS

This version of the ATBD atmosphere is based on code version v112 (April 2019) of the Geo-
mathematics, Remote Sensing and Cryospheric Sciences Laboratory at the University of Colorado

Boulder.



(1) The density-dimension algorithm is designed to be run with a set of algorithm-specific param-
eters. The main code change in this version is the implementation of three parameter sets,
one each for day-time, night-time and twilight conditions, to match the calculation of the in-
put data, normalized radiometric backscatter (NRB) data dependent on sun-elevation angle,
a change described in Part I and implemented recently. The replacement of the parameter
set for the DDA-atmos by three parameter sets, specific for day/night/twilight, is already

implemented in the operational code for atmospheric data products, ASAS code version v5.1.

(2) Section (11): The Q/A algorithm component introduced in an earlier version of this document
is not yet implemented in ASAS code version 5.1 at time of this document (May 6, 2019).
In addition to its primary functionality, the Q/A algorithm can be applied to avoid counting
subtle variations in tenuous aerosol layers as layer boundaries. Note that the Q/A algorithm

has not been changed, but section (20) added.

(3) Section (13): New algorithm components first described in v9.0 include the first classifications
of layers: ground surface and blowing snow. These have not yet been by SIPS/ASAS at time
of this document (May 6, 2019). A new ground flag is developed and introduced in this
document (v10.0), based on the ground detection algorithm. The ground-detection flag is
described in Section (18).

(4) Section (20.1), titled “Solution for the “bubbly regions” problem in aerosols and other tenuous
layers” needs to be finalized and implemented. This requires implementation of the Q/A

measure first.
(5) Section (20.2) leads to the requirement to put Combined Mask onto the product.

(6) For more details on code change requirements, a new section (21) “Coder’s Corner and Known

Issues in ATL09 Atmospheric Data Products (Related to ATBD Part II)” is included.

Changed Sections and New Sections in v10.0 compared to v9.0

Here, the changes in the document are listed, and for each new section, the implementation status

is annotated in addition to the code change requirement list above.

(1) Table 7, the parameter table for algorithm-specific parameters of the DDA-atmos is updated
from table 7 on page 261 of ATBD part 2, v9.0 from 2018-12-20.



(2)

New section (16): Sensitivity Study for Pre-Release Data Version v950, Necessitated by
Change in Background and NRB Calculation in ATL04

— Parameter change implemented in ASAS

New section (17): Day-Night-Twilight: Implementation of Three Sets of Parameters for DDA-
atmos Dependent on Day-Time (Sun-Elevation Angle)
— Already implemented in ASAS v5.1

New section (18): On Ground and Cloud - Development of a Ground-Detection Flag Based
on the DDA-atmos

— Needs to be implemented in ASAS

New section (19): Sensitivity Study to Optimize Parameters for the First Public Release of
ICESat-2 Data Products (ASAS code v5.1; 951 data)

— Parameter change implemented in ASAS for public release production in May 2019

New section (20): Thoughts about Layers and Detection Capability of ICESat-2 ATLAS:

Challenges and Opportunities for Atmospheric Research

New Subsection (20.1): Solution for the “bubbly regions” problem in aerosols and other
tenuous layers

— Needs to be finalized in v10.1 and implemented in ASAS

New Subsection (20.2): Thoughts about layers and detection capability of ICESat-2 ATLAS

— Combined_Mask needs to be added to product; is described in section (3)

New section (21): Coder’s Corner and Known Issues in ATL09 Atmospheric Data Products
(Related to ATBD Part II)

— This section includes three types of items: (1) Differences between the Geomath group’s developer
code and the ASAS v5.1 code for atmospheric data products

(2) Problematic data situations in the current release, v951

(3) Open problems

Source Code and Change Logs (Section 0): This section has been reorganized and now lists
the information regarding the latest version, v10.0, first, and information about previous

versions in following subsections.
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(9) References: References have been updated.

(10) Appendix: The table numbers in the Appendix have been changed to reflect new tables in

the added new sections.
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0.3 Versions v1.0, v2.0, Source References

Versions v1.0, v2.0. The early versions v1.0, v2.0 of this document (Jan 2014, April 2014) describe
the algorithm version v4, which is the version presented in the Atmosphere Algorithm Telecon
2013-08-09 (August 9, 2013), see presentation given by S. Palm (Reference: Palm, Yang, Herzfeld,

Algo-telecon-pdf), and small updates in the code.

0.4 Version v3.0., Source Reference

The ATBD version v3.0 of 2014-08-08 is based on code version v6 of May 2014. The changes
are included in the pseudocode section already. This code is used in the 2012 MABEL data
analysis (included in the ATBD version of 2014-10-08). This code is referred to as Method A in

the pseudocode sections, wherever there are differences.

Version v4.0. The ATBD version v4.0 of 2014-11-01 is based code version v103.0 of October 2014;
this code is used for the new 2013 M-ATLAS data analysis. This is included in the pseudocode as
well. This code is referred to as Method B in the pseudocode section, wherever there are differences
to Method A. MABEL and M-ATLAS data have different characteristics, which motivate some

changes in adjustable parameters and code.

0.5 Version v5.0, Source Reference

The ATBD version v5.0 2015-06-04 uses
atbd.atmos.icesat2.20150604c.wpseudocode.tex and is based on v103.0 of October 2014 for data

analysis, using improved parameter combinations for MABEL/ M-ATLAS data analysis.

0.6 Version v6.0, Source Reference and Change Notes

The ATBD version v 6.0 2015-10-31 ( ) uses

atbd.atmos.icesat2.201501031.wpseudocode.modular.tex and is based on v105.0 of October 2015
for data analysis. This code version includes the method A/B synthesis, which integrates the two
methods A and B that were developed for determination of the auto-adaptive threshold function for
2012 MABEL and 2013 M-ATLAS data analysis respectively. The integrated approach is described

here and should be the only approach that needs to be implemented by SIPS, because it is upward
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compatible with all previous algorithms. Previous descriptions are kept in this document version
for redundancy and to allow recreation of analyses based on earlier experiments and data sets. The
integrated method is applied to analysis of GLLAS-data-based simulated ICESat-2 data sets which

were created in 2015.

0.7 Version v7.0, Source Reference and Change Log

The ATBD Part II version v7.0 of 2016-08-24 ( , ) uses

atbd.atmos.icesat2.20160824.tex and is based on v106.0 of August 2016 for data analysis. The code
version v106.0 is essentially the same as v105.0. Small differences include numerical implementation
of kernel calculation, which yields identical results; see section (4.3.2) on “Calculate Density”,
which is now broken into steps. All python code listings have been sourced to code version v106.0.
Additional code listings have been included for “Determination of Layer Boundaries” in section
(4.3.7) and for ¢ Running Density Twice” in section (4.3.10). All pseudo-code versions that need
updating will be included shortly (and are not included here) - in ATBD Part II, v7.1. A new
sensitivity study will be included in ATBD Part II, v7.1 (when instrument parameters will be
more fully determined, especially an update of power is needed.) Current sensitivity studies are
sufficiently up-to-date for SIPS code implementation, as determined with SIPS (David Hancock,
2016-August-18). The recent sensitivity studies and analyses, included in this document in section
(9), use GLAS-data-based simulated ICESat-2 data sets which were created in 2015. Current work
uses SIPS-produced ATLO04 products which differ somewhat from the NRB data used here. As in
all previous versions of this ATBD part II, previous descriptions are kept in this document version

for redundancy and to allow recreation of analyses based on earlier experiments and data sets.

0.8 Version v7.1, Source Reference and Change Log

The ATBD Part II version v7.1 of 2016-09-23 ( ) ) uses atbd.atmos.icesat2.20160923.tex
and is based on code version v106.0 of August 2016 for data analysis. The difference between ATBD

Part II, v7.1 and ATBD Part II, v7.0 is this section, in which the changes between ATBD v6.0 and

v7.x are documented (for v7.0, v7.1). Listing 27 (from v7.0) was deleted.

Algorithm. There are no algorithm changes in this ATBD Part I, compared to the last version v6.0
of the ATBD Part II.

13



Changes in the text concern some of the explanations of the implementation of the algorithm,
as have resulted from discussion with the SIPS during implementation of the Density-Dimension

Algorithm (DDA) described here (by Jesse Wimert, coordinated by David Hancock).

The code version v106.0 is essentially the same as v105.0. Small differences include numerical
implementation of kernel calculation, which yields identical results; see section (4.3.2) on “Calculate
Density”, which is now broken into steps. (Specifically: There is a spot in the code where we used
to divide by 30, then multiply by it later - by 30/280 (it was in there for symmetry reasons between
x and y directions), since this appeared confusing, that multiplication was moved to a different
spot in the code. This is NOT an algorithm change however, rather an expression of coding taste

- see Listing 7 for the current version of the Compute-density function in v106.0).

Rounding: In the kernel calculation (Compute-density function, Listing 7) the type of rounding
is “round” (round to the nearest integer), changed from rounding by using the “ceiling” function
(round to the next highest integer) in code v105.0. This affects the calculation of kernel sizes in
some cases. Resultant values for examples match those in the Table 2d to facilitate trouble-shooting

during code implementation.

Algorithm description. The description of the algorithm step for density calculation (Step 2) has been

improved and is now broken into sub-steps (2.1)-(2.5), see section (3.2) on “Calculate Density”.

Code listings. All python code listings have be sourced to code version v106.0. Additional code
listings have been included for “ Running Density Twice” in section (4.3.10). All pseudo-code
versions that need updating will be included shortly (and are not included here) - in ATBD Part
11, v7.2.

Sensitivity Studies. The recent sensitivity studies and analyses, included in this document in section
(4.9), use GLAS-data-based simulated ICESat-2 data sets which were created in 2015. Current
work uses SIPS-produced ATL04 products which differ somewhat from the NRB data used here.
A new sensitivity study is not needed, because current sensitivity studies are sufficiently up-to-
date for SIPS code implementation, as determined by the authors in discussion with SIPS (David

Hancock, 2016-August-18) - but see section on Outlook.

Compatibility with previous versions of the ATBD for atmospheric data products, Part II. As in all previous
versions of this ATBD part II, previous descriptions are kept in this document version for redun-

dancy and to allow recreation of analyses based on earlier experiments and data sets. Sections not

14



changed were scrutinized and found up-to-date.
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0.9 Versions v7.x, Source References and Change Log Compared to v6.0

The table of contents changed according to other changes.

Here the sections on “Version and Source Reference” for v7.0 and on “Version, Source Ref-

erence and Change Log” for v7.1 have been included.

(M.2) Parameters: Anisotropy factors a,, for data units in meters in meters, ap;, for data

units in bins (pixels). The anisotropy factor itself does not have a unit. [changed in v7.1].

1.1 Each profile consists of the sum of 400 laser shots with a vertical (bin) resolution of 30 m

(more exactly, 29.9m as determined in August 2016).
Pseudo-code sections were deleted. They will be replaced.

All python code listings were replaced by listings pulled from code v106.0 (2016-08-17), this
is referenced in the caption of each listing. Note that there are still listings from previous
code versions in the document, e.g. in section 4.3.3. Necessity is apparent when reading those

sections.

4.3.1 Step 1: Set Parameters and Load Data. Subsection (4.3.1.1) on “Set Parameters”
was included and Listing 1 added, listings 2-5 updated to reflect all the data load options
that were needed, as new data became available during the ICESat-2 project, data collection

and algorithm and product development.

4.3.1 (see Change 2016-08-23: height bin 29.9m) - added as necessary wherever the old height

of 30 m is mentioned, to avoid confusion.

[Change 2016-08-23:] The size of the height bin was determined to be 29.9m rather than 30m.

4.3.2 Step 2: Calculate Density. This entire section was re-written to create a more stream-
lined presentation of the algorithm and its implementation. New code listings were included.
In subsection “Output”, a figure for the more typical kernel from example (t8) is included
in Figure 2a, in addition to the kernel from the example that is used throughout the section
(now Fig. 2b). Example (t8) is the example that was used during the code implementation
by SIPS (J. Wimert) and our group (Geomathematics CU Boulder) to ascertain that results

from our two code versions match.

16



4.3.3 Step 3: Using Density as a Dimension: A Density-Based Automatically-Adapting
Noise Filter. This section was carefully scrutinized during code implementation by SIPS and
found up-to-date. The only part needed for implementation is the Method A/B synthesis
(4.3.3.6) and following. However, it is nice to have the original methods A and B to help a

reader understand the concepts. New listings were pulled from code v106.0.

4.3.4 Removal of Small Clusters: Determination of Cloud Areas - Final. Listings were

updated using code v106.0. Pseudo-code was checked and left in the document.
4.3.5 Step 5: Output Data in Cloud Area no changes.

4.3.6 Step 6: Layer Boundaries (Top/ Bottom). The simple algorithm for determination of
layer boundaries was not changed. Pseudo code included in Listing 27 in v7.0 and removed

in v7.1.
4.3.10 Running Density Twice. Code for Running Density Twice was included from v106.0.

Throughout the document, a few typos and other small items were corrected throughout

the document, and figure numbers and section references were adjusted as needed.

Acknowledgements. Discussions with David Hancock, Jeff Lee and Jesse Wimert during
code implementation at the SIPS are equally appreciated and have resulted in improvements

of the description.

References. Updated bibliography file (bib-file).

Outlook. The future version referred to as ATBD Part II, v7.1 in the “Version and Source Reference”
section for ATBD Part II, v7.0 is now referred to as ATBD Part II, v7.2. A new sensitivity study
will be included in ATBD Part II, v7.2 (when instrument parameters will be more fully determined

by the engineering group, especially an update of power is needed.)
Pseudo-code sections will be replaced.

An algorithm part for Q/A will be implemented and tested.

17



0.10 Version v8.0, Source Reference and Change Log

Source Reference

The ATBD Part II version v8.0 of 2017-11-17 ( , ) uses atbd.atmos.icesat2.20171117.v8.tex

and is based on code version v110.0 of November 2017 for data analysis.
It is referenced as ( ), for the full citation, see the reference section.
The corresponding Part T is ( , ), for the full citation, see the reference section.

Change Log: Differences between Version 8.0 and Version 7.1

Note in version numbers. There is no version (v7.2) for Part II, instead, there is this current

new version, (v8.0), which includes a sensitivity study.

Section (4.4) of (v7.1) deleted. Section (4.4) was titled “Useful algorithm components from
previous versions” and included only “(4.4.1) Ratio Cluster Algorithm”. With the design of
the new algorithm for a confidence flag as a measure of layer detection quality (see section
(4.11) in v8.0), the previous section (4.4) of (v7.2) becomes obsolete. Note that the deletion

of section (4.4) has moved all following section numbers.

Data reference. Data referred to as “GLAS-data-based simulated ICESat-2 data” in ATBD
v7.x (2016) are now referred to as “GLAS-data-based simulated ICESat-2 data (2016 ver-
sion)”, to distinguish from “GLAS-data-based simulated ICESat-2 data (ATL04) of Oct-

2017”. Differences in the characteristics of these two data sets are described in section (4.10).

Section (4.3.6) is entirely rewritten. Algorithm update. Determination of layer bound-
aries. The algorithm for determination of layer boundaries, based on the final mask, has been

improved. The algorithm follows the same basic rules for layer boundary determination.

New Section (4.3.3.7) Quantile Calculation. During testing of the code implementation by
the SIPS in October 2017, we discovered that the algorithm used in quantile calculation as
part of the threshold function can contribute significantly to the error in results between two
different code implementations. Care needs to be taken when using a library function (python,
fortran or any other language). Library functions typically only differ in the interpolation

step between actually occurring values, but since near the threshold values used in the DDA

18



the density values are relatively scarce, this difference matters. The effect is illustrated in

section (4.12) “Testing”. The old and new algorithms are described Section 4.3.3.7.

New Section (4.10) Sensitivity Studies for Analysis of 2017-Oct Version of GLAS-based
Simulated ATL04 Data. In this section, differences in the characteristics of “GLAS-data-
based simulated ICESat-2 data (ATL04) of Oct-2017” data compared to “GLAS-data-based
simulated ICESat-2 data (2016 version)” are described. A new sensitivity study is carried out
to determine a set of algorithm-specific parameters for auto-adaptive analysis of ATL04 data
(with Oct 2017 characteristics.). An important result is that the DDA-algorithm option “run-
ning density twice” is required to ascertain correct detection of different types of atmospheric
layers during day-time and night-time conditions. As the application of the newly-developed
Q/A measure “half-gap confidence flag” (see section (4.11) Quality Assessment) shows, the
layer detection using the double-density runs with the parameter sets (t56) [and (t64)] yields
throughout high confidences (mostly 0.8) and somewhat lower confidences where appropriate.

— Why two parameter sets at this point? See Section (4.12) on Testing.

New Section (4.11) Quality Assessment. New Algorithm. An algorithm that quantifies
confidence as a numerical value (with absolute value between 0 and 1) is introduced for
quality assessment. Mathematical Q/A algorithm description, Q/A plots and applications
are included as subsection. The algorithm to be used is termed “Half-gap confidence”. In
addition, the half-gap confidence is compared to an alternative “3-bin confidence”. “Half-gap

confidence” is a better measure than “3-bin confidence”.

New Section (4.12) Testing. This section includes information on the process of testing the
code implementation by the SIPS, comparison with the CU code and criteria for accepting

code matches. This is work in progress.

New Section (4.13) Coder’s Corner. Because “Testing” at time of writing of ATBD v8.0
(November 2017) is still in progress, an informal section “Coder’s Corner” is added to facilitate

picking up the testing process whenever possible at the SIPS. This section should be removed

before the ATBD is passed on to NASA Headquarters.
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0.11 Version v8.1, Source Reference and Change Log

Source Reference

The ATBD Part II version v8.1 of 2018-03-21 ( , ) uses
atbd.atmos.icesat2.20180321.v8.windex.v2.tex and is based on code version v110.0 of November 2017

for data analysis.
It is referenced as ( ), for the full citation, see the reference section.
The corresponding Part I is ( , ), for the full citation, see the reference section.

Change Log: Differences between Version 8.1 and Version 8.0

No algorithm changes. There are no algorithm changes in version v8.1 compared to v8.0

and the code is v110.0, the same code as used in v8.0.

Index with hyperlinks (Appendix A). Changes in this version concern improvements that
make the ATBD more user-friendly: An index has been included, with hyperlinks from terms

in the index to the locations in the text where the referenced terms are explained.

List of abbreviations (Appendix B). A list of commonly used abbreviations is included as

Appendix B.

Section, figure and table numbering. This is the first version in which the sections are
numbered within Part II, starting with section 1. In previous versions the entire part II was
counted as section 4 of the ATBD Atmosphere {Part I, Part II} combined. This change is
motivated by the fact that Part I, v7.3 has 7 sections, not 3 as previously. For example,
section 4.1 Data of v8.0 is now section I Data of v8.1. The order of the sections remained the

same. Numbering of figures and tables is changed accordingly (the digit 4 has been dropped).
Typos. Some typographical errors were corrected.
Table of content has changed according to other changes made.

References. The bibliography has been updated.
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0.12 Version v9.0, Source Reference and Change Log

Source Reference

The ATBD Part II version v9.0 of 2018-12-20 ( , ) uses
atbd.atmos.icesat2.201812201.v9.windex.v2.nodraft.tex and is based on code version v111.0 of De-

cember 2018 for data analysis.
It is referenced as ( ), for the full citation, see the reference section.

The corresponding Part I is ( , ), for the full citation, see the reference section.

Change Log for ATBD Atmosphere, Part II, v9.0 (first post-launch version of the ATBD)

compared to v8.1
Code Change Requirements for SIPS/ASAS

This version of the ATBD atmosphere is based on code version v111 (December 2018) of the
Geomathematics, Remote Sensing and Cryospheric Sciences Laboratory at the University of Col-

orado Boulder. There are no code changes required in this version for the existing DDA-atmos as

implemented by SIPS/ASAS.

New algorithm components described in v9.0 include the first classifications of layers: ground
surface and blowing snow. The Q/A algorithm component introduced in an earlier version of this
document (see, section 11) is not yet implemented by SIPS/ASAS at time of this document (Dec.
20, 2018).

Changed Sections

1. Section (1) Data was updated to include post-launch ICESat-2 ATLAS data.

2. In section (3.10) on “Running density twice”, the following note was added:
Note (2018-Dec-19). The option of “running density twice”, developed in 2013, was not deemed
necessary for optimized data analysis until 2017/2018 and is now adopted as a component of
the operational code for (post-launch) ICESat-2 data. This is based on a sensitivity study of
2017-Oct Version of GLAS-based simulated ATL04 data (section 10) and a sensitivity study of
the first post-launch data collected with the ICESat-2 ATLAS instrument (section 15). As a
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10.

side note, the re-institution of “running density twice” in the operational code for post-launch

data shows that it is a good idea to keep old algorithm components in the ATBD.

. In section 10, we highlighted the results of the sensitivity study by introducing section titles,

to facilitate identification of essential consequences for code applications after launch.
(10.1) Summary, Motivation and Data Sets

(10.2) Results and Consequences for Algorithm Applications: Running Density Twice, t56,
t64

Previous subsections 10.1 ff are now 10.3 ff. A few sentences have been streamlined and it
is indicated that the 2017=oct simulated data are the last pre-launch data used in algorithm

development.

. New section (13) First Layer Classifications: Surface and Blowing Snow. This includes

motivation (13.1), algorithms for identification of ground surface (13.2) and blowing snow

(13.3) and implementation notes (13.4).

. New section (14) Analysis of first ICESat-2 ATLAS Data after launch and sensitivity

study for ATLAS atmosphere data.

. New section (15) Post-Launch Q/A Considerations

Section Coder’s Corner remains the last section of this ATBD, part II, and is now section

16.af

. Updated reference list. Includes blowing snow references and ATBD updates.

. Appendix A was added, listing all input and output variables described in this ATBD Atmo-

sphere, Part II. The Appendices A and B, version 8.1, are now appendices B and C, version

v9.0.

The Table of Contents changed according to other changes.
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Preambula. The description of the density-dimension algorithm in part II is organized in the

following sections:

1 Data

2 Mathematical Concepts of the Algorithm

3 Algorithm Steps

4 Application to 2012 MABEL data

5 Validation

6 Analysis of 2013 M-ATLAS Data

7 Sensitivity Studies (for 2013 M-ATLAS Data)

8 Analysis of GLAS-Data-Based Simulated ICESat-2 Data (2016 Version)

9 Sensitivity Studies (for GLAS-Data-Based Simulated ICESat-2 Data (2016 Version)
10 Sensitivity Studies for Analysis of 2017-Oct Version of GLAS-based Simulated ATL04 Data
11 Quality Assessment

12 Testing

13 First Layer Classifications: Surface and Blowing Snow

14 Analysis of First ICESat-2 ATLAS Data After Launch and Sensitivity Study for ATLAS Atmo-
sphere Data

15 Post-Launch Q/A Considerations

16 Coder’s Corner

Appendix

Section 1 Data describes the data set that is used for the current version of the algorithm.

Section 2 Mathematical Concepts of the Algorithm describes any non-standard mathematical concept

that is used in the algorithm, as a reference.

Section & Algorithm Steps describes the algorithm in a step-by-step form, so that a programmer can
work along these steps and implement the algorithm. Our algorithm (the prototype version) is

implemented in modular form. Pseudo-code and essential sections of the original python code are
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included in section 3.

versions of the atmosphere algorithm (but not in the current version) and which may be useful in

future forms of the algorithm, depending on the results of future MABEL data collections.

Section 4 Application to 2012 MABEL Data is included to demonstrate the algorithm steps and

includes figures. This section uses MABEL Data from 2012 observations.

Section 5 Validation uses CPL (Cloud Physics Lidar) data for validation of the algorithm. The
location of the clouds seen in the CPL data were not known to the developers of the algorithm and

software.

Section 6 Analysis of 2013 M-ATLAS Data includes a correction algorithm and applications of an
improved version of the auto-adaptive density-dimension algorithm to a data set including different

atmospheric and noise conditions and different types of atmospheric layers.

Section 7 Sensitivity Studies (for 2018 M-ATLAS Data) demonstrates sensitivity of analysis results to
changes in the algorithm “fixed” parameters to better prepare for possibly different characteristics

in ICESat-2 ATLAS data as may be collected post-launch.

In Section 8 Analysis of GLAS-Data-Based Simulated ICESat-2 Data (2016 Version), simulated ICESat-2
data based on GLAS data from ICESat, rather than on MABEL data, are analyzed, which leads

to use of different algorithm parameters.

Section 9 Sensitivity Studies (for GLAS-Data-Based Simulated ICESat-2 Data (2016 Version) is the analog
to section (7) and presents sensitivity of analysis results to changes in the algorithm parameters

for GLAS-based ICESat-2 data.

Section 10 Sensitivity Studies for Analysis of 2017-Oct Version of GLAS-based Simulated ATL0J Data
(Oct-2017 Version) presents sensitivity of analysis results to changes in the algorithm parameters for

GLAS-based Simulated ATL04 Data (October 2017 version)
Section 11 Quality Assessment introduces confidence measures for layer detection.

In Section 12 Testing, steps of algorithm implementation by the SIPS are summarized, results

compared and criteria for acceptance of code matching derived.

In Section 18 First Layer Classifications: Surface and Blowing Snow, algorithms for identification of
the surface and blowing snow in atmospheric data and are introduced. These represent the first

classification algorithms, based on the layer detection using the DDA-atmosphere.
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Section 14 Analysis of First ICESat-2 ATLAS Data After Launch and Sensitivity Study for ATLAS At-
mosphere Data represents the beginning of post-launch ICESat-2 ATLAS data analysis and Quality
Assessment (Q/A algorithm runs) The Satellite was launched on September 15, 2018. The Ad-
vanced Topographic Laser Altimeter System (ATLAS) is the single primary instrument aboard
ICESat-2.

In Section 15 Post-Launch Q/A Considerations, the Q/A algorithm is applied to ICESat-2 ATLAS

data and studied in more detail.

Section 16 Coder’s Corner is introduced as an an informal section to facilitate picking up the testing
process whenever possible at the SIPS. This section should be removed before the ATBD is passed
on to NASA Headquarters.
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1 Data

The ICESat2-atmosphere algorithm described here is written for analysis of ICESat-2 Advanced
Topographic Laser Altimeter System (ATLAS) data and uses simulated ICESat-2 data, based on
Multiple Altimeter Beam Experimental Lidar (MABEL) data collected in 2012 and 2013, and
simulated ICESat-2 data, based on GLAS data, for algorithm development and demonstration in
sections 1-13. These data include both day-time data and night-time data. Instrument effects
may be different for ICESat-2 ATLAS data. Some parameters in the algorithms are changeable
to allow for adjustments that may be needed after launch; these parameters are termed algorithm

parameters.

The algorithm versions have been tested for the growing collection of theory-based simulated data,
GLAS-data based simulations and MABEL-data based simulations, for day-time and night-time

data and hence for various forms of simulated or observed noise levels.

First ICESat-2 ATLAS data are analyzed starting in section 14 after launch of the satellite on
September 15, 2018.

The density-part of the atmosphere algorithm is written and described such that neighborhood
definitions match the special format of the ICESat-2 atmosphere data, as summarized below, i.e.
no further adaptation of the mathematical concepts to the atmosphere data is necessary when
implementing these algorithms. The most notable difference between ICESat-2 atmosphere data
and ICESat-2 Earth surface data is that for atmosphere, 400-shot sum data are recorded, binned

horizontally and vertically, whereas for all Earth surfaces, individual photons are recorded.

1.1 Data Format

The format of the ATL04 data, described in Part 1, used for determination of clouds and other

atmospheric layers and their boundaries is as follows:

As described in the introduction of this document, the level 0 (raw) data consist of 3 profiles
generated from the 3 strong laser beams. The profiles range in height from 13.75 km above the

local value of the DEM to 0.25 km below. Each profile consists of the sum of 400 laser shots with
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a vertical (bin) resolution of 30 m (more exactly, 29.9m as determined in August 2016). There
are a total of 467 bins in each of the 3 profiles, which are downlinked from the spacecraft at 25
Hz. Each bin contains the number of photon counts received for that height range over the 400
shot summing interval (equivalent to about 280 m along track). Nominal space-craft velocity is
7000m/s, laser repetition rate is 10KHz, which corresponds to 0.7 m along-track-distance per laser
shot. Each profile is the sum of 400 shots, hence atmosphere data are recorded at 25Hz and each

bin represents 280 meters along-track.

The input data set is output as a figure (data.png, Figure 1). Additional figures are given in sections

4 “Application to 2012 MABEL Data” and 6 “Analysis of 2013 M-ATLAS Data”.

The input to the cloud layer detection algorithm is normalized relative backscatter (NRB) created
and stored on the ATL04 product (Section 2). NRB is created by subtracting the background from
the raw photon count data, multiplying the result by the square of the range from the satellite to
the bin in question and dividing by the laser energy. As part of the ATLO04 process, the NRB data
are stored in a constant altitude frame that spans -1 to 20 km with respect to the ellipsoid (700

bins). Bins in this frame that do not contain data are given the value of -9999.

The data are stored as a 2-dimensional array. The size of this file is 700 bins in elevation and
variable length in along-track distance. Bins are counted from top to bottom. There is one line
(one record) per vertical profile, so that records can be appended as data get collected during the
mission. ICESat-2 data will be provided in hdf05 format. In the hdf05 format, each profile is stored
in fields 0-700 (0 on the left, 700 on the right side of the line). The number of valid bins is 467 and
the indeces (bin numbers) of the top and bottom bin with a valid entry are provided in the ATLO04

data records.

Note. In the older examples given in this ATBD version (examples created until 20140725), height
ranges from -1000m to +14000 m relative to the onboard DEM and data are given as a 2-dimensional

array with 500 bins in elevation and variable length in along-track direction.

Subnote. Notes like these are included throughout the document to facilitate reconstruction of
analysis results during code implementation by the SIPS or anyone checking the pseudo/code or

his/her own software implementation (troubleshooting).
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2 Mathematical Concepts of the Density-Dimension Algorithm

2.1 Background and Motivation of the Density-Dimension Algorithm

The algorithm is aimed at detection of clouds and other atmospheric layers, such as blowing snow

and aerosols, and their boundaries in ICESat-2 ATLAS data.

Satellite radar altimeters and laser altimeters, for example the Geoscience Laser Altimeter System
(GLAS) aboard ICESat, used to apply the concept of pulse-limited altimetry, where a strong signal
is transmitted ( , ; , ). To determine range, a Gaussian waveform
is fitted to the received signal and the maximum of that waveform used to identify the two-way
travel-time of the signal between the satellite and the surface of reflectance (the Earth’s surface
or a cloud layer). ICESat-2 will utilize a next-generation multi-beam micro-pulse photon-counting
laser altimeter. This altimeter will transmit many pulses of low energy, which facilitates a higher
repetition rate. On the receive side, reflections from every single photon will be recorded as discrete
received events; this will include noise photons and signal photons. The determination of signal
versus noise for a micro-pulse photon-counting laser altimeter hence requires a new mathematical
concept that will take the role of the waveform analysis in classic pulse-limited altimetry. In pulse-
limited altimetry, a data aggregation is given by the bundeling of the energy in the strong signal and
the (generally working) separation of two different signals in time, whereas for micro-pulse photon-
counting laser altimeter data a data aggregation needs to be performed mathematically. The data
aggregation algorithm needs to be able to perform a separation of noise and signals for diffuse
reflectors, such as clouds, regions of high aerosols, the Earth’s surface and layers of blowing snow.
The problem is mathematically ill-posed, especially for the case of day-time altimeter data, where
high noise results from ambient light. The principal idea of the algorithm is that any reflector will
result in a higher spatial density of received photons than the spatial density of photons recorded

in other areas (background or noise areas).

The basic concept of the algorithm is the calculation of density for each recorded data point: That
is, (a) for each photon for ice surface, vegetation and other land cover, or (b) for each point in the

2-dimensional matrix of recorded data (for atmosphere), i.e. for each (along-track profile, altitude)
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interval. For atmosphere data, the intervals contain photon counts (or NRB values, as described in
the previous sections of this ATBD). The data aggregation is performed by an application of the
radial basis function (described in 2.2, M.1). Numerically, the radial basis function is applied as a
multiplication between a weight matrix and the observed photon count values, as a moving-window
operation. As the algorithm moves throughout the data set, the point or interval for which density
is calculated is termed “density center” (see 2.2, M.3). The actual form of the RBF is controlled
by three parameters: window size, anisotropy and standard deviation (which are interdependent).
The anisotropy factor extends the search window farther in horizontal direction than in vertical
direction. which matches the observation that layers have a larger horizontal then vertical extension.
The calculation of density performs the data aggregation, on which all other algorithm steps are
based. This RBF-density can be thought of as the counterpart of the waveform or histogram in
pulse-limited altimetry, and we shall see that it is a powerful and versatile concept for micro-pulse

photon-counting laser altimeter data analysis in general.

A main objective of the algorithm is to identify physically meaningful reflectors and distinguish
them from background noise, artifacts and detector dark counts. Atmospheric layers include clouds,
aerosol layers and blowing snow, and in addition, ground is included in the atmosphere data. To
separate reflectors of interest (here: atmospheric layers) from noise regions, a threshold between
density of reflectors and density of noise needs to be determined automatically. Because back-
ground conditions change, for instance due to surface reflectance and time of day, the threshold
determination algorithm needs to adapt automatically to conditions. This is achieved by the con-
cept of density calculated as an additional dimension, i.e. the solution for the best threshold will
be searched in a space of a larger dimension; the algorithm is termed “Density-dimension algorithm

(DDA)”.

In the determination of a ground surface (ice sheets, sea ice, vegetation, land), a surface detection
and classification algorithm can utilize the fact that the ground surface is a continuous reflector,
which can either be searched for as a layer in the received signal or expected near a DEM. In
contrast, such an assumption does not hold for atmospheric layers, which can be present “anywhere”
within the lowest 15 km of the atmosphere and their position changes on a short time scale. This
necessitates an automated determination of signal density thresholds without a-priori knowledge of
location of a noise-box or noise layer, i.e. the algorithm needs to be independent of a-priori control

parameters. These requirements are met by the auto-adaptive density-dimension algorithm.
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There are several fine points to the implementation of the DDA, which will be described in the

sequel: Mathematical concepts in section 2.2 and implementation in the pseudo-code section (3).

Resolution of results: A characteristic of the expected results from the ICESat-2 ATLAS instrument
is that the photon-counts may be relatively low and often not exceed background values much and
hence the gradient between density of optically thin clouds (such as high Cirrus clouds) or aerosols
layers (from pollution or distant volcanic eruptions) to the surrounding atmosphere can be very
small. For optically thin layers, this fact requires aggregation of data over a large neighborhood,
to yield density values that allow to separate noise from atmospheric layers at all. As we shall
see, not loosing layers is a challenge in analysis of ATLAS atmosphere data. For optically thick
and possibly spatially well-confined narrow layers data aggregation over a large neighborhood is
not needed (as enough points can be found in smaller neighborhoods), and also not desirable,
because a larger window may introduce a larger smearing effect (depending on the coefficients in
the weight matrix). In conclusion, there are two objectives which suggest different controls of

algorithm parameters:

(1) Detection of atmospheric layers with small gradients to surrounding regions (small ratios of

backscatter). Not loosing optically thin layers.

(2) Precise determination of layer boundaries, wherever possible, especially for optically thick

and spatially narrow layers.

Both seemingly contrary goals can be met by running the DDA algorithm twice with different
parameters, first with a smaller window and second with a larger window (and different sigma) and
combing the resultant cloud masks (layer masks). The vertical resolution of results is the same as
the vertical diameter of the window; however, since the weights taper to the outside of the search
window, a much higher resolution than window size is generally achieved. The effect of applying the
data aggregation using density is that smaller and weaker features become visible with distinction

than in the raw data (see section 6 on validation).
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2.2 Main Mathematical Concepts

In this subsection mathematical concepts are described that are utilized or specifically developed
for the density-dimension algorithm for atmosphere and hence may go beyond commonly known

mathematical concepts. Implementation of the algorithm is described in section (3).

(M.1) Radial Basis Function

The radial basis function is the basic mathematical concept used in the data aggregation for calcu-
lation of density. The data aggregation by density calculation forms the basis for all other algorithm

steps.

A radial basis function (rbf) is a real-valued function whose value depends on distance from a center

ceD for all z in a definition area D

®(z,¢) = @[z —cf]) (1)
with respect to any norm || - ||. In the algorithm, we utilize a Gaussian radial basis function (letting
r=x —cand seR)

a(r) = "7 @

Visualized as a surface in R3, this rbf has the shape of (half) a Gaussian bell curve rotated around
the location of a center ceR?. In the photon-data analysis, we have ceR? and the surface is in R*.

More formally, the Gaussian probablility density function is

z—py2

: e (Voo (3)

fnormpdf =
2mo

with standard deviation o and mean p of the population; replacing o = s and p = 0 yields eqn (4):

CD(T) = U\/%fnormpdf (4)
(see ( ) ); ( )

The radial basis function is especially useful for data aggregation for the photon-counting-laser-
altimetry problem, because points close to the center point are given a high weight, and weights
taper off towards the outside of the search window, following the Gaussian function. This property

yields a weight matrix that enhances features (layers) of different sizes and thicknesses.
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(M.2) Anisotropy Norm

Using an anisotropy norm is motivated by the notion that cloud layers (as seen in lidar data) have
a tendency to extend more in the horizontal direction than in the vertical direction. When the
anisotropy norm is combined with the radial basis function, points found in a horizontal direction
from the center point are weighted higher than points found in a vertical direction. The following
algorithm implements a matrix multiplication that is an affine transformation of the density function
(the radial basis function) into a function of ellipsoidal shape. This is implemented by the following

algorithm: The anisotropy norm is defined as

[vllq = (14wl ()

for any vector veR?, with a transformation matrix

100
A=]o0 L ¢ (6)
001

where aeR.

This is applied to the density centers ¢ and all their neighboring points in eqn. (6) as
2 = clly = [[A(z = )l (7)

Points of the same rbf value ®(|lz — ¢||,) are now located on an ellipsoid with axes (a,a,1) around
the center point ¢ and (half) Gaussian bell curves along each radial line. The density value fz(c)
then reflects the above-mentioned tendency of cloud layers (as seen in lidar data) to have a larger
horizontal than vertical extension (for a > 1 with a given in meters). In the 2-dimensional realiza-

tion of the simulated data set, a transformation matrix

A:

S Q=
—

is used.

The value of a=3 in the anisotropy matrix is hard-coded in version v4 of the atmosphere algorithm
and in all previous versions, but an algorithm parameter in v101-v105 and flowing versions. It

has been found that the values of 3 works well in all applications and data sets analyzed to date,
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including 2012 and 2013 MABEL-based simulated ATLAS data (M-ATLAS data). Different values
of a have been used in 2013 data analyses and parameter sensitivity studies (see Tables 5 and 6).

To use an isotropic search, the value must be set to 1, i.e. A becomes the identity matrix.

On units. For ICESat-2 atmosphere data, we need to distinguish between dimensions and factors
in meters and in data bins (“shot sums”, see section 1.1 “Data Format”). Since each atmosphere
data bin represents 280 m along-track and 30m in height (or range), there is already an anisotropy

factor of approximately 9 inherent in the data format. Hence

280
m = %abm ~ 9apin (9)
and
$ 0
Ay = (10)
0 1
corresponds to approximately
30
Apin = (11)
0 1

or (squish in the other direction in bin units, which was used in some analyses)

1 0
Abin = (12)
0

Wl

The relationship between a,, and a;, is explicitly included in the pseudo-code in section (3).

Parameters: Anisotropy factors a,, for data units in meters in meters, ay;, for data units in bins

(pixels). The anisotropy factor itself does not have a unit.

(M.3) Density Centers

Identification of points within clouds (or other atmospheric features, such as aerosol or blowing
snow layers) is motivated by the observation that a cloud is a diffuse reflector, but points within
the clouds have a high probability of being located within clusters of other parts of the clouds,

a property that does not hold for reflections of ambient light or noise outside of the clouds. To
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identify points located inside clusters or clouds of points with higher density, the rbf concept is

applied as follows:

For the photon-data analysis problem, the definition set D is the set of all photons (in a track or
window). For each point ceD, a density value fy(c) is calculated by summing up rbf values for
all neighbors within a given radius r, as follows. The density value is an aggregation of values
recorded in a neighborhood of the center point, with close-by points given higher weights and

weights decreasing by distance. First, a weight matrix is calculated as

W(e,z) = We(z) = ([lx — cl|,) (13)

with zeD, = {ZeD : ||Z — ¢||, < r} the set of all points within a given rectangular box around the
center point ¢ (note that in this initial distance determination simply the infinity-norm (absolute

distance in each direction) || - ||, is used). In the radial basis function, we use a norm || - ||, that

oo
takes anisotropy into account, as described in section (M.2). The specific dependencies of the search
area and the norm are given in the implementation section (3). Then the density value, fy(c), is

calculated as

fale) = > We(w)z(x) (14)

zeD,.

where z(x) are the bin data (“shot sums”). The normalized density value f7°"™(c) is

norm _ ZIEDC Wc(x)z(:v)
S W) 1

where the denominator works as a normalization factor. The advantage of using the normalized
density function over the density function is that the mathematical description of the auto-adaptive
threshold determination for discrimination of atmospheric layers from background is more trans-

parent.
— The concept of density centers is illustrated in Figures 1-3.

Search neighborhood D.. Matching the format of the ICESat-2 atmosphere data, which are
recorded in rectangular bins (400-shot sum data, see section (1.1)), the search neighborhood used

in the density calculation is a rectangular box, consisting of 2r, + 1 bins in along-track direction
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and 2r, + 1 bins in height (the “+1” originates from the center of the neighborhood.)

The actual value of the radius is a parameter that can be changed in the algorithm. For example,
for 2012 MABEL/ M-ATLAS data analysis, the radius parameter is 3 for small neighborhoods and
5 for large neighborhoods. A radius value of 3 (r, = r, = r = 3) results in a box of size 7 in z
(along track) and 7 in z (altitude, range); a radius value of 5 results in a box of size 11 by 11. For

more examples, see the parameter table (Table 2d).

The size of the search neighborhood can be selected using the radius values directly, or by prescribing
the values of the standard deviation o in the density function (in eqn. (3,4) in (M.1)) and anisotropy
(in equation (7), section (M.2)). If only o and a,, are given, 20 is selected to determine the
neighborhood, resulting in a kernel matrix with (40 + 1) rows and (40ap, + 1) columns. If the
radius parameter(s) are given in addition, the kernel of the density function is defined by the
weights derived using o and a,, for an area determined by r, and ry, and weights are normalized
for bins within this area. Typically, integer values are selected for . To ascertain that integer
neighborhood dimensions result, rounding to the nearest integers is applied (note that code version
v105 used [20], the ceiling function, which results in the next-largest integer). Relationships
between neighborhood size, standard deviation and anisotropy and resulting effects on the success
of the algorithm in layer detection are analyzed and visualized in detail in sensitivity studies in

sections (7), (9) and (10).

Parameters: radius used for density determination, radiusl - for density runl, radius2 - for density

run2 (see Table 2d). Values for o and a,, are also given in Table 2d.

(M.4) Density-Dimension and Application as a Noise Filter

As stated in section 2.1, an automated determination of a threshold between clouds and background
atmosphere needs to be possible. This task is complicated by the fact that surface reflectivity
varies along-track and noise levels change by orders of magnitude between day-time and night-time
observations. Hence we need to account for this along-track variability and program an auto-

adaptive algorithm to separate noise versus signal and associate signal returns to cloud layers.

In this algorithm, this task is accomplished by the concept of density dimension. The terminology
“using density as a dimension” means that density is calculated along-track with an automated
determination of a threshold that adapts to noise levels and the level of total returned photons.

The threshold is calculated in density space. Implementation of this concept is described in section
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(M.5) Discrimination of Optically Thick and Optically Thin Clouds and other Atmospheric

Layers

The density-dimension algorithm can be employed to distinguish between optically thick and opti-
cally thin clouds, or other atmospheric layers such as aerosols and blowing snow. Spatially narrow
layers of clouds with high optical depth have the property that a high density value will be reached
in a small neighborhood search. Spatially broad layers of clouds of lower density require a neighbor-
hood search with a larger neighborhood. A simple application of the density-dimension algorithm
is to use a fixed neighborhood throughout the entire analysis. This single-density approach allows
to detect clouds and aerosols and the ground surface. It works well for 2012 MABEL day-time and
night-time data for a large range of flights (see Figs. 1-8, 9 and 11-13).

However, since smaller neighborhoods are sufficient to detect optically dense layers of spatially thin
cloud, the following alternative approach can be applied to derive more detailed images of clouds

(this involves running density twice).

There are two alternatives to apply the algorithm: Alternative (A): In a simple version, density is
performed once, resulting in the ATL09 product parameter densityl. All other steps are performed
as described in section 3. Alternative (B): First, the density operator is applied once, using a small
neighborhood (e.g., radius 3); then all other processing steps are applied. A binary cloud mask is
determined. In preparation of the second step, the area of the dense clouds (area within the cloud
mask) is replaced by random points with the same spatial distribution as noise (in the along-track
region). Second, the density operator is applied again, using a larger neighborhood (such as radius
5); along with other processing steps. This identifies the thinner clouds (density2) and a binary
mask, mask2. The binary masks from densityl and density2 are combined to create the cloud mask

(union of the two mask areas).

The number of density runs becomes a control parameter in the algorithm (see section (3)).

(M.6) Removal of Small Clusters and Determination of Final Cloud Mask

The goal of the algorithm is to derive atmospheric layers and their top and bottom boundaries.
In the analysis of ICESat-2 ATLAS atmosphere data, there will be a search for a maximum of six

layers (up to 15km above the Earth Surface, here approximated by the on-board DEM). The cloud
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mask determined in step (M.5) may leave small areas that appear like speckles and likely only the
large, simply connected areas are clouds. An algorithm that removes any small clusters is applied.
The numerical algorithm used for small-cluster removal is described in the pseudo-code section (3).

The resultant cloud mask defines the location of atmospheric layers.

Parameter. In the current implementation, any clusters that are simply connected areas of less than

300 bins are removed (see Table 2d).

(M.7) Determination of Atmospheric Layers and Their Top and Bottom Boundaries

A mask is given as a binary data set with a 1 for ”cloud bin” and a 0 for "not-cloud bin”. Layers
must be at least 90 m thick. The height of the top-most 1 in a series of at least three consecutive
1-s is identified as the top of a cloud/atmospheric layer, the height of the bottom-most 1 in a series
of at least three consecutive 1-s is identified as the bottom of a cloud/atmospheric layer. Exact
implementation of the code is given in the pseudo-code section (3), as gaps in cloud layers must

also have a minimal thickness.

(M.8) Density of a Column and Density of an Atmospheric Layer

Density of a column is calculated by summing up all density values in a vertical profile (=column).
Density of a layer is calculated by summing up all density values within the given layer in a vertical

profile.
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3 Algorithm Steps and Pseudocode:
Density-Dimension Algorithm for ATLAS Atmosphere Data

This section includes pseudocode with explanations of algorithm steps, along with essential sections
of the original code. The original code is written in python (the python code is given in blue boxes).
The pseudocode is a translation from python into a generic algorithmic language with comments
(the pseudocode with comments is given in yellow boxes, pseudocode in black font and comments

in green font).

In text sections that accompany the code listings, the annotated pseudocode is linked to the equa-

tions in the mathematics sections.

Figures are included to illustrate the computational steps as well as to indicate at which point in
the code the figures can be created (i.e. at which point in the code the result or product has been

created that is needed to create a given figure). The actual code for figure creation is not included.
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3.1 Step 1: Set Parameters and Load Data

This part of the algorithm sets the parameters for the DDA and loads the data.

3.1.1 Set Parameters

Set the algorithm parameters given in the command line call of the python code in Listing 1.

90

cmdline_parser.add_option(

’-a’, ’--aniso-factor’, dest=’aniso_factor’,

type=’str’, default=’10’,

help=’Anisotropy factor. Multiple values will do heirarchy of densities.’)
cmdline_parser.add_option(

’-w’, ’--neighborhood’, dest=’neighborhood’,

type=’str’, default=’’,

help="Prescribe the neighborhood of the kernel in pixels. Multiple values will do

heirarchy of densities.’)

cmdline_parser.add_option(

’-d’, ’--downsample’, dest=’downsample’,

type=’str’, default=’5",

help=’"Downsample factor. Multiple values will do heirarchy of densities.’)
cmdline_parser.add_option(

’-s’, ’--sigma’, dest=’sigma’,

type=’str’, default=’100’,

help=’Standard deviation of gaussian kernel (meters). Multiple values will do
heirarchy of densities.’)
cmdline_parser.add_option(

’-c’, ’—-cutoff’, dest=’cutoff’,

type=’str’, default=’2’,

help=’Cutoff gaussian kernel after number of stddevs. Multiple values will do
heirarchy of densities.’)
cmdline_parser.add_option(

’-t’, ’--threshold_factor’, dest=’threshold_factor’,

type=’str’, default=’5’,

help=’Adaptive factor for threshold local quantile. Multiple values will do
heirarchy of densities.’)
cmdline_parser.add_option(

’-T’, ’--threshold-bias’, dest=’threshold_bias’,

type=’str’, default=’50",
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help=’Base threshold for threshold. Multiple values will do heirarchy of
densities.’)
cmdline_parser.add_option(
’-m’, ’--min-cluster’, dest=’min_cluster’,
type=’int’, default=300,
help="Minimum cloud size in pixels’)
cmdline_parser.add_option(
’--no-r2’, dest=’no_r2’,
action=’store_true’, default=False,
he1p=’Remove r2 correction’)
cmdline_parser.add_option(
’--no-bg’, dest=’no_bg’,
action=’store_true’, default=False,
he1p=’Remove bg correction’)
cmdline_parser.add_option(
’--no-bgr2’, dest=’no_bgr2’,
action=’store_true’, default=False,
help="Remove both r2 and bg correction’)
cmdline_parser.add_option(
’--correct-power’, dest=’correct_power’,
action=’store_true’, default=False,
help=’Apply r~power correction’)
cmdline_parser.add_option(
’-L’, ’--threshold-segment-length’, dest=’threshold_segment_length’,
type=’str’, default=’0’,
help="Enter n for threshold segment length = 2n+1. Multiple values will do
heirarchy of densities.’)
cmdline_parser.add_option(
’-q’, ’--quantile’, dest=’quantile’,
type=’str’, default=’0.5",
help=’Quantile 0 < q < 1. Multiple values will do heirarchy of densities.’)

options, args = cmdline_parser.parse_args()

Listing 1: Python Code v106.0 (2016-08-17): Set parameters
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3.1.2 Load Data

There are several different load data functions that are based on the structure of the data file that

is given. So far, only binary files have been given, but each has a different structure.

-
def load_atmos_binary_201409(filepath) :

rrs

Loads ATLAS atmosphere data from Steven Palm data recieved 2014—09—10
rr7s

f = open(filepath, "rb")

block

f.read(4)
imax, = struct.unpack(’h’, block[:2])

jmax, = struct.unpack(’h’, block[2:4])

background = zeros((imax,))
for i in range(imax):
block = f.read(4)
val, = struct.unpack(’f’, block)

background[i] = val

start_range = zeros((imax,))
for i in range(imax):
block = f.read(4)
val, = struct.unpack(’f’, block)

start_range[i] = val

data = zeros((jmax, imax))
for j in range(jmax):
for i in range(imax):
block = f.read(4)
val, = struct.unpack(’f’, block)

data[-j, i] = val

return background, start_range, data

Listing 2: Python Code v106.0 (2016-08-17): Load data version 1

def load_atmos_triplebinary_201409(filepath) :

rrs
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Loads ATLAS atmosphere data from Steven Palm data recieved 2014—09—10
rr

f = open(filepath, "rb")

block = f.read(4)

imax, = struct.unpack(’h’, block[:2])

jmax, = struct.unpack(’h’, block[2:4])

imax += 1

background = zeros((imax,))
for i in range(imax):
block = f.read(4)
val, = struct.unpack(’f’, block)

background[i] = val

start_range = zeros((imax,))
for i in range(imax):
block = f.read(4)
val, = struct.unpack(’f’, block)

start_range[i] = val

data = zeros((jmax, imax))
for j in range(jmax):
for i in range(imax):
try:
block = f.read(4)
val, = struct.unpack(’f’, block)
datal[-j, i] = val
except:

continue

return background, start_range, data

Listing 3: Python Code v106.0 (2016-08-17): Load data version 2

def load_atmos_binary(filepath) :
777 Loads ATLAS atmosphere data from Steven Palm binary files (pre summer

2014) 777

filename = os.path.split(filepath) [1]
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f = open(filepath, "rb")

block = f.read(4)

X, = struct.unpack(’h’,block[:2])
y, = struct.unpack(’h’,block[2:4])
histo = []

for i in range(y):
histo.append([])
for j in range(x):
block = f.read(4)
count, = struct.unpack(’f’,block[:4])

histo[-1].append(count)

histo = array(histo, dtype=’int’)

return histo

Listing 4: Python Code v106.0 (2016-08-17): Load data version 3

p
def load_atmos_triplebinary(filepath):

77’ Loads ATLAS atmosphere data from Steven Palm triple binary files’’’

filename = os.path.split(filepath) [1]

f = open(filepath, "rb")

histos = []
for k¥ in xrange(3):

block = f.read(4)

X, struct.unpack(’h’,block[:2])

y, = struct.unpack(’h’,block[2:4])
histos.append([])
for i in range(y):
histos[-1] .append([])
for j in range(x):
block = f.read(4)
count, = struct.unpack(’f’,block[:4])

histos[-1] [-1] .append(count)
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histo = array(hstack(histos), dtype=’int’)

return histo

Listing 5: Python Code v106.0 (2016-08-17): Load data version 4

This part of the algorithm simply loads the binary files, which are described in section (1) Data.
(Simulated ICESat-2 data provided by S. Palm have the same format as expected ICESat-2 ATLAS
Data.) The data are stored as a 2-dimensional array containing the NRB-corrected values per bin.
The size of this file is 467 profiles in elevation and varying length in along-track distance. Each bin
represents 280 meters along-track and 30 meters in elevation (or range), the total altitude range is
-1000m to 14000m. The data set is output as a figure (data.png, Figure 1). Additional figures are

given in section 4 Application to 2012 MABEL Data.

[Change 2014-07-25:] The ATLAS data will be in a frame of 700 profiles in elevation, to account
for the fact that the atmosphere data is recorded relative to the onboard DEM, for an interval of
250m below the DEM to 14750m above the DEM. The data is then included in a data frame of a
fixed references of [-1000m, 20000m]| to ascertain that neighboring bins represent the same height.
Note there are now 700 bins of 30m height for a total height of 21000m, with measured values for
an interval of 15000m and flag values for padding at top/ bottom of each profile. The flag value is
-9999. (see Change 2016-08-23: height bin 29.9m).

Note that examples compiled before 20140725 use the previous data format of 500 elevation bins.

In case of actual ICESat-2 data processing, the input data will be NRB_Prof (as provided in ATL04,
see Table 2.7, Part I), instead of photon sums, given as a Float(700,3), for 3 strong beams from
20 to -1km, based on the local DEM value, with vertical resolution of 30 m (exactly: 29.9m). The
integer(3) NRB_Top_Bin, also in ATL04, gives the starting (top) bin number within the -1 to 20km
frame where data begins, for each of the three strong beams. There are always a total of 467 valid
bins (unless there are missing data). For both inputs, see Table 3 “ATL04 Product Parameters” in

section 2.3.5, Part 1.

The NRB profiles are created from the profiles of raw photon counts - supplied from ATL02 by
subtracting the background, multiplying by the square of the range from the satellite to the return

height and normalizing by the laser energy (see section 2).
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Note on Corrections. The data analysis can also be based directly on photon counts; these are
recorded in ATLO02 (see Part I) under the file name /atlas/pcex/atmosphere_sw/atm_bins. The
" Jatlas/pcex/atmosphere_sw/” part of that name is the HDF group. Alternatively, photon counts
(“400 shot sums”) can be reconstructed from the inverse operations of noise removal and range-
correction. This step is relevant at the current stage of code development (2014-10-07), as it affects
the processing of simulated ATLAS data based on airborne MABEL data and their range and noise

characteristics. This is further discussed in a section on corrections and simulations, section (6.1).

[Change 2016-08-23:] The size of the height bin was determined to be 29.9m rather than 30m.

Altitude (m)

200000 400000 600000 800000 1000000 o 1200000
Along-track distance (m)

10°

Figure 1. Data. MABEL data set 02Apr12.02. [Based on ATLAS data simulation without range-square
correction and without NRB correction.

Note on MABEL and simulated ATLAS data:

2012 Examples are based on MABEL data and a simple simulation algorithm (one can simply use

the MABEL data).

2013 examples use NRB and range-square correction and a more complex simulation. The correction

analysis and effects on noise levels is given in a separate section (6.1).
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3.2 Step 2: Calculate Density

Summary: Density (Densityl) is calculated following equation (5) using a neighborhood of a radius
of 5, this results in a box of size 11 by 11 as a moving window. In the radial basis function, a
mean of zero and a standard deviation of 20 is used. The radial basis function depends on distance
as independent variable. The distance is modified using a linear map to emphasize bins along the
along track axis. Density is calculated for every point in the data set. Note that other values are used

for neighborhood in later studies, see Table 2d.

3.2.1 Computation of Density — Overview of Steps
Note: This overview is written to facilitate faster code implementation, however, the detailed instructions in
the main description section (3.2.2) are still valid. The equation numbers repeat.

Note: now s = 29.9, it used to be y,.s = 30, so we need to explicitly use y,.s in the code and

the algorithm description.

(3.2.1.1) Step 2.1: Read in Kernel Control Parameters

The central part of the density calculation is the calculation of the Gaussian kernel for the radial
basis function, which performs the data aggregation. The calculation of the kernel is controlled by
the parameters a,,,c and cutoff, which are read in, as described in section (3.1) “Step 2: Read in
algorithm-specific parameters and load data”. From these three parameters, the dimensions of the

kernel are derived (see Step 2.2).

a,, — anisotropy factor for data in meters (e.g.: a,, = 10)

Obin — O = Opip, the standard-deviation of the rbf for data in pixels (= for data in bins), for the

vertical direction (for y), (e.g. 0 = opin = 3)

cutoff — the number of standard deviations after which the kernel is “ cut off”.
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Alternatively, the kernel can be controlled by the dimensions n,m and a subset of the three param-
eters, either {an,, o} or {am, cutoff}. Defining n, m first makes it easier to design a kernel from the
viewpoint of a moving window averaging or convolution, while defining the statistical parameters o
and cutoff first allows to design the kernel from a Gaussian point of view. The anisotropy factor a,

always needs to be defined. The algorithm allows for these different options to control the kernel.
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(3.2.1.2) Step 2.2: Calculate Dimensions of the Kernel

[see page 44 of ATBD, v 6.0]

n = int(2 round(o cutoff)) + 1 (16)

Yres am)) 11
Lres (17)

= int(2 round(o cutoff ap;,)) + 1

m = int(2 round(o cutoff

using

Yres 30 1
in = N — ~ = 18
Qbin Tros Qo 280 A, 9 Qo ( )

Note that the anisotropy is unit-less (dimensionless), but it takes a different value, when calculated

for data in meters or calculated for data in pixels.
[compare p. 14-15 in ATBD, v 6.0]
Note: If one uses ¢/ = 300 (as in code version v105, the version used in ATBD v6.0) then the

equations for n and m in the algorithm or code can assume a more symmetrical form:

/

n = int(2 round( cutoff)) + 1 (19)

yres

/

m = int(2 round( cutoff a,,)) + 1 (20)

xres

Note that ¢’ = 300 converts from {standard-dev for units in pixels in the y-direction} to {standard-

dev for units in meters in the y-direction}.

However, v106 now uses the most intuitive form of these equations, which are eqn 1 and the first

to units all together.
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(3.2.1.3) Step 2.3: The Norm: Determination of the Distance that is Needed in the RBF

The next step is to calculate the distance between a center point and an neighboring point, as

needed in the rbf. This is calculated for each pixel (i, ) of the kernel, as follows:

1 -1 -1
dist(i,j) = norm(a (- mT) Tres, (i — 2 9

)yres> for i=1,....n55=1,....,m (21)

where norm is the library function for the Euclid norm (2-norm). The distance is now in meters.

(3.2.1.4) Step 2.4: Kernel Calculation

kernel(i,j) = Gaussian(loc = 0,scale = 0 yyes).pdf (dist(i, j))) (22)

i.e. here one has to use the standard deviation ¢ in meters in the y-direction (multiplied by yres)-
The formalism is that of applying a 1-dimensional Gaussian function with center in 0 and standard

deviation 0’ = o y,es to the anisotropy-norm-based distance (between a center and a point).

Note: If calling a library function for the Gaussian function, one needs to check whether that

function uses the standard deviation or the variance!
(3.2.1.5) Step 2.5: Normalization of the Kernel Values

- Sum up the kernel values and divide each (i,j) entry by the sum, according to eqn. 15 (in ATBD
v6.0).

- in python or pseudocode

o kernel(i, j)
kernel(i,j) = kernel.sum
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3.2.2 Description

Search neighborhood D.. Dependencies of search neighborhood determination are described in section

(M.3).

Treatment of edges:

e Version v4 and version v6 code: To avoid edge effects, density is not calculated for points
which are located within the neighborhood search radius of the edge of the data set. Bins on

the boundary are assigned a density value of zero.

e Version v103.0 code: To avoid edge effects, density for points within the neighborhood search
radius is calculated by “folding the kernel over”, i.e. reflecting the data from the inside of
the data window to the outside, to cover the area needed by the kernel; i.e. points from the
inside are mirrored to the outside. This is a built-in capability of the convolution algorithm

used.

e Version v105 and v106: The edge-foldover for the kernel is not implemented (because larger
sections of data were used). If large data gaps occur during the operational phase of the

mission, an edge-foldover of the kernel may be nice to have.

Detail. In order to aggregate points for the density calculation, a distance function is needed. This
involves an anisotropy matrix (see equation (7)), called squish-matrix in the pseudocode. Each
point in the data set will be a density center, and the distance function (with anisotropy norm)

will be applied to all points as given eqn. (8).

The radial basis function (RBF) is then applied, it is a real-valued function whose value depends
on the distance from a center, as described in sections (M.1)-(M.3). The function normpdf is
the Gaussian probability density function given in equation (3). A generic normpdf function may
be available in a software library, this may typically be applied using mean=0 (because in our
application the distance to the center point is already calculated). Alternatively, the result can be

calculated for the distance value, r, as in eqn. (4).

Application to all points in the data set is performed.
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Parameters: Notice that a neighborhood of radius 5 is used here in 2012 data analysis, this can be
changed, and different values are used for 2013 data analysis and in the sensitivity study. However,
as the triple-data-set example demonstrates, the radius value does not need to be changed for
each data set (i.e. this does not affect the auto-adaptive capabilities of the algorithm; instead, the
algorithm developers found in sensitivity experiments that the previously selected fixed parameters

could be improved upon.) — See sections on sensitivity studies (7), (9) and (10).

Note that in the following calculations, the term weight matriz is used for a matrix of radial basis

function values; and weight function is used in place of RBF function.

Parameters: Anisotropy factor. Recalling that the anisotropy factor in meters, a,, is related to the
anisotropy factor ap;, in bin units by

280
am = %abin ~ 9apin (16)

the default values are a,, = 3 and ap;, = 1/3 in 2012 MABEL data analysis (see figures (1-9
and 11-12); in 2013 M-ATLAS analysis we use a,,; = 10 and a,5 = 20 for two density runs (see
Table 2d). The effect of changing the anisotropy parameter is illustrated in the sensitivity studies

in section (7).

To examine and illustrate the effects of changing the fixed parameters on the density calculation
and resultant cloud layer determination, a set of sensitivity studies is carried out in section (7).
This is included to allow later adaptation of the algorithm, in case the actual noise characteristics
of the ATLAS data after launch change. The algorithm is now written such that the parameters

can be easily changed, but, once determined, are automatically passed through the code modules.

Normalization option. To get a more automated handle on the parameters, the analysis of the 2013
M-ATLAS data uses the density function with a normalization factor (eqn. (15)), such that the
weights in the kernel will sum up to 1. To recall, the kernel is the Gaussian kernel intersected with
the search window. The 2012 MABEL data analysis is carried out without normalization by the
sum of weights (eqn. (14)), but with normalization by maximum. The code uses the default setting
“normalization = false”, referring to normalization by sum of weights. The normalization option
is actualized by passing a flag to the respective module (see listing). The 2013 M-ATLAS data
analysis uses “normalization = true” (eqn. (15)), as does the analysis of GLAS-based simulated

data.

Next, the density values are calculated by summing up as in eqn. (5), this is given in the listing

o1



“Call Compute-Density”.
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Code Listings

There are two listings here. The first is the function call from the main code that includes updates
to the logfile, plotting commands, and general housekeeping ( listing “Call Compute-Density”). The

second is the definition of the Compute-density function (Listing “Compute-density function”).

-
### Compute density
if len(algo.steps) == options.end_step: break
algo.start_step(Step(name=’Compute density’,
vis_funcs=[plot_kernel, plot_density, plot_density_ordered]))
algo.steps[-1] .set_visualize(len(algo.steps) in visualize_steps)
kernel, density = compute_density(histo.filled(), sigma=sigma, cutoff=cutoff,
aniso_factor=aniso_factor, grid_res=(x_res, y_res), neighborhood=
neighborhood)
density = ma.array(density, mask=isnan(density))
densities.append(density)
kernels.append (kernel)
globals() .update (locals())
algo.steps[-1].done ()
savetxt (’ /home/trantow/ws/icesat2_atmos/code/v6.0/output/’+data_filename+’ _’+str(
density_lvl)+’ .density’,density, delimiter=’ ’, newline=’\n’, fmt=’7f’)
L

Listing 6: Python Code v106.0 (2016-08-17): Call “compute-density” function.

def compute_density(data, sigma, aniso_factor, grid_res, cutoff=2, min_density=1e-10,
neighborhood=None) :

rrs

Computes ’density’ by convolving with 2D gaussian.

Note: scipy.ndimage.filters.convolve 1is
NOT mask aware. Use appropriate fill value.

Note: using astropy.convolution allows for nan values which get interpolated.

Returns masked array with zero values masked.
r 77

x_res, y_res = grid_res # pixel dimensions

print sigma, cutoff, x_res, y_res, aniso_factor

if neighborhood is None:

n = int(2*round (sigma*cutoff))+1 # Change ceil to round by Tom 10/28/15
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m = int(2*round (sigma*(y_res/x_res)*cutoff*aniso_factor))+1

else:

n = 2*neighborhood + 1

m = 2*neighborhood + 1
logger.info(’Kernel shape: {}x{}’.format(n,m))
kernel = zeros((n, m))
for i in xrange(n): # rows is y—axis
for j in xrange(m): # cols is x—axis
x = norm((1/aniso_factor*(j-(m-1)/2.)*x_res, (i-(n-1)/2.)*y_res))

kernell[i,j] = gaussian(loc=0, scale=sigma*y_res) .pdf (x)

kernel = kernel/kernel.sum{()

density = convolve(data.astype(float), kernel, mode=’reflect’)

return kernel, density

Listing 7: Python Code v106.0 (2016-08-17): Compute-density function (v106.0).
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Output

A figure of the weight matrix We(x) is created (see eqn. 13), given in Figure 2.
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00150
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Figure 2. Illustration of density calculation as convolution with kernel (weight matrix).

(a) Typical weight matrix (kernel matrix) used in the Density-Dimension Algorithm. This example is taken from
sensitivity study (t8) for GLAS-based simulated ICESat-2 data [see Table 4 and section 8, Figure 31-1]. (b) Weight
matrix (kernel matrix) used for analysis of MABEL data set 02Apr12.02. This kernel uses r=5 and results in an
(11,11) weight matrix. o = 140 makes the kernel appear unusual. (c) Convolution of data matrix with kernel is
implemented as a moving-window operation: point-wise multiplication of the weight matrix (kernel matrix) with a
window of the data set. In the illustration, a kernel of (5,5) is applied to a data set of 35 profiles and 9 height boxes
per profile. Center point of the example window is (17,4). Figure in (b) thanks to Mark Vaughan.
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At this point, the density matrix can be written out and a plot of density created, as shown in the

figure below (Fig. 4.3).

[Output: density plot, {date}dens5.out]

10000

10°

Altitude (m)

200|000 400000 600000 800000 1000000 1200000
Along-track distance (m)

Figure 3. Density. MABEL data set 02Apr12.02
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3.3 Step 3: Using Density as a Dimension: A Density-Based Automatically-
Adapting Noise Filter

The objective of this step is to separate reflectors (clouds, aerosol layers, blowing snow) from
background regions. This is achieved by application of the density-dimension algorithm, which
yields a density-based noise filter that moves along-track and automatically adapts to the variable
conditions of reflectivity and noise levels. Motivation and background of the ideas programmed

here are described in section (M.4).

Throughout the time of algorithm development, simulation of different data sets and collection of
data from airborne simulator instruments of the ICESat-2 ATLAS instrument, several different ver-
sions of the density-dimension algorithm have been implemented, especially of the auto-adapative
threshold determination function. In the following sections, algorithm components are identified as
“Method A” and “Method B”. Method A was originally developed for analysis of 2012 MABEL
data (sections 4 and 5), and Method B was originally developed for analysis of 2013 M-ATLAS
(sections 6 and 7), however, both methods work for any atmospheric lidar data set (with similar
properties and formats). New for code versions v104.0 (September 2015) and v105.0 (October
2015), an algorithm that synthesizes methods A and B was developed and implemented. The in-
tegrated approach is described in section 3.3.6 (ATBD part II, v6.0 and v7.0) and should be the
only approach that needs to be implemented by SIPS, because it is upward compatible with all
previous algorithms. Previous descriptions are kept in this document version for redundancy and
to allow recreation of analyses based on earlier experiments and data sets. The integrated method
is applied to analysis of GLAS-data-based simulated ICESat-2 data sets which were created in 2015
by S. Palm and K. Barbieri (sections 8 and 9).

The algorithm components are implemented as described in the following sections and in Tables 2a-

d.
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3.3.1 Creating Downsampled Density Arrays (Method A)

For an area of interest (this can be a long flight segment), an array of density values is created
(in the previous step). The density array is downsampled by a factor of 5 in each direction,
the downsampled array contains the maximal value in bins of 5 by 5 (submatrices of size 5 by
5) of the original density array. The 5-by-5 sized submatrices contain small regions, the density
characteristics of each region are stored in the downsampled array. For profiles of 500 bins per
profile (per vertical column), the downsampled array has 100 points per vertical column, generally
the down sampled array has (number-of-bins) /5 points per vertical column. In width each vertical
column of the original data array (and hence of the density array) corresponds to 280 meters along-
track, hence each column of the downsampled array corresponds to 1,400 meters alongtrack. The

down sampled array is simply a reduction in resolution by a factor of five in each direction.

Pseudo-code for this step is given in the listing “Creating downsampled density”.

define downsample(density_matrix, neighborhood, bin):
# performs maximum—downsampling
# arguments:
# bin — amount of downsampling (default 5)

# neighborhood — neighborhood used in density calculation

# shape returns the size of the matrix data

[number_of_rows, number_of_columns] = shape(density_matrix)

# take away zero padding
density_matrix_no_pads = density_matrix[neighborhood:-neighborhood, neighborhood:-

neighborhood]

# create matrix of zeros size number_ of_rows/bin,number_of_columns/bin

downsampled_density = zeros(number_of_rows/bin, number_of_columns/bin)

# 1 iterates 0 to number_of_ rows—1 by steps of bin
for i in 0 to number_of_rows-1 by bin:
#j iterates 0 to number._of_columns—1 by steps of bin

for J in 0 to number_of_columns-1 by bin:

#submatrix is a matrix size bin by bin
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submatrix = density_matrix[i:i+bin, j:j+bin]

# assign the max value of the submatrix to the downsampled density
matrix

downsampled_density[i/bin, j/bin] = max(submatrix)

#find the max value within the downsampled density matrix

max_filler = max(downsampled_density)

#replace all 0 in downsampled _density with the max_filler

replace(0, max_filler, downsampled_density)

return downsampled_density

Listing 8: Pseudo-Code v103 (2014-10-30): Creating Downsampled Density (Method A)

define downsample(dens, neighborhood, bin):

bi =0
while sum (dens[bi]) == 0: bi+=1
bj = -1

while sum (dens[bjl) == 0: bj-=
k=0
while sum(dens[:,k]) == 0: k+=1
1=-1

while sum(dens[:,1]) == 0: 1-=1

dens_n0 = dens[bi:bj-1,k:1-1]

x,y = dens_n0.shape

y/bin
x/bin

ny

nx

chy = y % bin

y-=chy

chx = x % bin

x-=chx

59




downsampled = dens_nO[:x,:y].reshape([nx, x/nx, ny, y/ny]).max(3).max(1)

refi = downsampled.max()

downsampled = array([[refi if v == 0 else v for v in downsampled[i]] for i in xrange(len(

downsampled))])

return downsampled

Listing 9: Python Code v103 (2014-10-30): Creating Downsampled Density (Method A)
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3.3.2 Threshold Determination (Method A)

In the next step, the downwsampled array that contains the maximal density values of the small
regions is examined to create noise regions and to determine a signal-noise threshold. The algorithm
moves along track, using segment lengths of one vertical column in the down sampled matrix,
corresponding to 5 columns in the original density matrix. For each segment, a number (50 in
this code version) of 5-by-5 bins with lowest maximal values is identified. The maximal value of
the density values in this set of 50 is used as the threshold between noise and cloud-signal for this

along-track segment. This threshold value is applied to identify clouds in this along-track segment.
The pseudo-code for this step is given in listing “Finding thresholds”.

Note that this step is different for method B.

Parameters:

- number of bins that form the noise area set (50 bins of size 5 by 5), 50 lowest values used for

threshold determination for noise regions. Note total is 100 bins in the downsampled array.

- along-track size of the segment for which a noise-threshold is determined (1 column of the down

sampled matrix, equal to 5 columns of the original matrix, equal to 1400 meters)

-
define determine_thresholds(downsampled_density, bin_count, neighborhood) :

# computes threshold vector

# arguments:

# downsampled density — downsampled density matrix
# bin _count — number of bins to ignore (default 50)

# neighborhood — neighborhood used in density calculation

# shape returns the size of the matrix data

[number_of_rows, number_of_columns] = shape(downsampled_density)

# for each column index in downsampled_density
for j in 0 to number_of_columns-1:
#for each integer from 0 to one less then bin count
for i in 0 to bin_count-1:
#find the first occurance of the minimum

#and replace it with the max_filler

first_replace(min(downsampled_density[:,j]), max_filler)
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# find the minimum of each column
# downsampled_ thresholds will be a vector size 1 by number.__of_columns/bin

downsampled_thresholds = min(downsampled_density, 1)

# start is a vector of size 1 by neighborhood filled will the first
downsampled_threshold value

start = repeat(downsampled_thresholds[0], neighborhood)

# middle is a vector that has every element of downsampled_ thresholds repeated
bin times

middle = repeat(downsampled_thresholds, bin)
# start is a vector of size 1 by neighborhood filled will the last
downsampled_threshold value

end = repeat(downsampled_thresholds[number_of_columns-1], neighborhood)

# combine the start, middle, end to have a vector size 1 by number_of_columns

thresholds = cat(start, middle, end)

return thresholds

Listing 10: Pseudo-Code v103 (2014-10-30):: Determination of Thresholds (Method A)

Ve

def determine_thresholds(downsampled, bin, bin_count, neighborhood) :

refi = downsampled.max()

min_indexes = []

min_values = []

for i in range(bin_count):
min_indexes.append(argmin(downsampled,0))
min_values.append(downsampled. min(0))
for i in range(len(min_indexes[-11)):

downsampled [min_indexes[-1] [i],i] = refi

min_values = array(min_values)

max_values = min_values.max(0)
max_values = array([max_values[0]]*bi+[item for sublist in [[x]*bin for x in max_values]

for item in sublist]+[max_values[-1]]*(chx+1)+[max_values[-1]]*(abs(bj)+1))
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thresholds = max_values

return thresholds

Listing 11: Python Code v103 (2014-10-30):: Determination of Thresholds (Method A)
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The auto-adaptive threshold is illustrated in Figure 4.
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Figure 4. Auto-adaptive threshold levels, MABEL data set 02Apr12.02.
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3.3.3 Application of a Binary Matrix to Outline Cloud Areas (=First Approxima-
tion): Cloud Boundary/ Cloud Area Determination (Method A)

A binary matrix is a matrix filled with zeros and ones. Ones identify cloud areas, zeros identify
background areas/ noise areas. Using the threshold determined for each along-track location (i.e.
for each segment of 5 columns), a value of 1 or zero is assigned for each location in the original

matrix according to the following rule (where x(i,j) is the density value in the original matrix):
if ©(i,7) in the original matriz is larger than threshold in this segment + threshold-bias, then binary(i,j)=1
else bin(i,j)=0

Parameter: a threshold-bias of 70 is used.

((

for j in 0 to number_of_columns:

for i in 0 to number_of_rows:

if density_matrix|i,j]>threshold_bias + threshold][j]:
then : Binary matrix[i,j] = 1

else : Binary matrix|[i,j]j = 0

end - i-loop

end - j-loop

)

-
define compute_binary_mask(density_matrix, threshold_bias, thresholds):

# computes binary mask of cloud regions

# arguments:

# density matrix — matrix of computed densities
# threshold _bias — overall threshold bias

# thresholds — vector of thresholds

# shape returns the size of the matrix data

[number_of_rows, number_of_columns] = shape(density_matrix)

# binary matrix i1s a matrix size number_of_ rows,number._of_columns filled with

zeros

binary_matrix = zeros([number_of_rows, number_of_columns])
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# j iterates over integers from 0 to number_of_ columns—1
for j in 0 to number_of_columns-1:

# temp_vector is a vector size number_of_rows by 1

# elements in temp_vector are 1 where the density matrix value is greater
than the threshold for the jth column

for i in 0 to number_of_rows-1:

temp_vector[i] = density_matrix[i, j] > threshold_bias + thresholds[j]

# assign the temp_vector to the jth column of the binary matrix

binary_matrix[:, j] = temp_vector

return binary_matrix

Listing 12: Pseudo-Code v103 (2014-10-30):: Creating Binary Matrix

~
define compute_binary_mask(dens, threshold_bias, thresholds):

binary_matrix = array([[dens[j,i] > threshold_bias+max_values[i] for i in xrange(len(

dens[j1))] for j in xrange(len(dens))])

return binary_matrix

Listing 13: Python Code v103 (2014-10-30):: Creating Binary Matrix
At this point in the algorithm, the first approximation of the cloud areas can be output and plotted,

as seen in the following figure (Fig. 5):

[Output: cloud areas (approximate), {date}bin5.out]
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3.3.4 Method B for Auto-Adaptive Determination of Thresholds Using the Density-

Dimension Algorithm

The analysis of M-ATLAS data from 2013 MABEL data necessitated analyzing data sets of different

noise, background and data characteristics.

An alternative thresholding method was created to allow finer adaptation of threshold levels to
variable conditions. In the density calculation, the weight matrix is normalized so that density

represents a weighted average of values (eqn. (15)).

In method A, the neighborhood size is input as a controlling parameter for the kernel, according
to

n=m=2r+1 (17)

to create a kernel (weight matrix) of dimensions (m, n) [m in x-direction (along-track direction), n

in y-direction (height box in a profile)].

In method B, the kernel dimensions are usually (by default) calculated from the standard deviation

o (in bins) and anisotropy factor a,, (in meters), according to

n = int(2 ceil( 7

; cutoff)) + 1 (18)

m = int(2 ceil(—~
Tres

cutoff a,,)) + 1 (19)

where o=0y;, is the standard deviation given in bins or pixels (noting that o, = 3004;, matching
the format of the atmospheric data), cutoff the number of standard deviations after which the
Gaussian function is cut off (the default is cutoff = 2), a,, the anisotropy factor (given in meters),
Yres = 30 m the size of height boxes in a profile and x,.s = 280 m the along-track size of boxes,
ceil denotes the ceiling function (the smallest integer larger than the value; i.e. ceil(4.9) = 5 and
ceil(4) = 4, and int denotes the entire or integer function; i.e. int(4.9) = 4 and int(4) = 4. If a
neighborhood value r is prescribed in addition to o and a,,, then the kernel is of size (2r+1,2r+1)
with matrix values determined using o and a,, symmetrical to the kernel center (as for method A).
Method B can use normalized kernel values or not normalized values (see flow diagrams). Method

A does not use normalized kernel values.
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To give an example, for the analysis of the M-ATLAS triple data set (see Fig. 19) the following
values are used (see also Table 1b): For density run 1, ¢ = 3 and a,, = 10, hence n = 13 and
r1,y = 6, the half-size in y-direction; for the x-direction, m = 13 and 71, = 6 as well. For density
run 2, 0 = 6 and a,, = 20, hence n = 25 and ry, = 12, the half-size in y-direction; for the

x-direction, m = 49 and 7o, = 24.

Next, the 90% quantile is calculated for an along track moving window of 20 columns (about 6
km). Then, the threshold is calculated by multiplying by an overall sensitivity factor and then
adding an overall bias. The sensitivity factor scales the influence of the local variation, while the

bias modifies the overall density threshold (it is 1 so far).

threshold[i] = threshold_bias + threshold sensitivity * (90% quantile in window at 1)

Parameters. A threshold bias of 70 is used as a default. In the example using the MABEL-based
triple data set (Fig. 19), a threshold bias of 60 is used (see also Table 2b, ¢). Other examples are

given in the applications section (6) . A threshold-sensitivity of 1 is used.

This method version is used in application example M-ATLAS 2013 - see Application section (6.3).

define compute_thresholds(density_matrix, threshold_bias, threshold_sensitivity, window):
# computes vector of thresholds, one for each column in the data
# arguments:
# density _matrix — matrix of computed densities
# threshold bias — overall bias to thresholds
# threshold_sensitivity — sensitivity of thresholds to shot variation
#

window — window (in pixels) to use for shot variation
[number_of_rows, number_of_columns] = shape(density_matrix)

# initialize to vector with same length.
thresholds = zeros(number_of_columns)
for i in 0 to number_of_columns-1:
# indices which bracket columns to use for threshold calculation, clipped
at left and right ends
lower_index = max (0, i-round (window/2))

upper_index = min (number_of_columns-1, i+round (window/2))
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# each column threshold is a linear combination of threshold bias and
window column quantile
thresholds[i] = threshold_bias + threshold_sensitivity*quantile(density_matrix[:,

lower_index:upper_index], .9)

return thresholds

Listing 14: Pseudo-Code v103 (2014-10-30):: Determination of Thresholds (Method B)

-
define compute_thresholds(density_matrix, threshold_bias, threshold_sensitivity, window) :

n,m = data.shape
thresholds = zeros((1,m))
for i in xrange(m):
sl = slice(max (0, i-floor(window/2)), min(m, i+floor (window/2)))

thresholds[0,i] = threshold_bias + mquantiles(datal:,sl], .9) * threshold_sensitivity

return thresholds

Listing 15: Python Code v103 (2014-10-30):: Determination of Thresholds (Method B)

3.3.5 Application of Thresholds to Derive First Cloud Mask (Binary Matrix), Method

B

The pseudo-code and pycode for application of thresholds to derive a first cloud mask is then as

followts:

-
define compute_binary_mask(density_matrix, thresholds) :

# computes binary mask of cloud regions

# arguments:

# density matrix — matrix of computed densities

# threshold bias — overall threshold bias (default 70)
#

thresholds — vector of thresholds

# shape returns the size of the matrix data

[number_of_rows, number_of_columns] = shape(density_matrix)

# binary matrix is a matrix size number_of_rows,number. of columns filled with

zZeros
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binary_matrix = zeros([number_of_rows, number_of_columns])

# j iterates over integers from 0 to number._of_columns

for j in 0 to number_of_columns-1:
# temp_vector is a vector size number_of_rows by 1

# elements in temp_vector are 1 where the density matrix value 1is greater

than the threshold for the jth column
for i in 0 to number_of_rows-1:

temp_vector[i] = density_matrix[i, j] > thresholds[j]

# assign the temp_vector to the jth column of the Binary matrix

binary_matrix[:, j] = temp_vector

return binary_matrix
L

Listing 16: Pseudo-Code v103 (2014-10-30):: Application of Thresholds to Derive First Cloud Mask (Binary
Matrix) - Method B

define compute_binary_mask(density_matrix, thresholds):

binary_matrix = density_matrix - thresholds > 0

return binary_matrix

Listing 17: Python Code v103 (2014-10-30):: Application of Thresholds to Derive First Cloud Mask (Binary
Matrix) - Method B
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3.3.6 Synthesis of Methods A and B

3.3.6.1 Where do the Differences Occur?

There are two parts of the code where there is a difference between methods A and B:
(1) In the calculation of the density field

(2) In the threshold determination

3.3.6.2 Density Field Calculation

Methods A and B control the weight matrix/ the kernel differently, by means of different parameters.

These have already been synthesized in v5.0 atbd. The remaining differences are the following:

Method B uses scaling (normalization) by the sum of weights in equation (15), whereas Method A
uses scaling by the maximum density value found in the neighborhood used for kernel calculation.
However, in future we will only use method B, as in code v103, to calculate density, with the
normalization on (logical “true” in Table 2b,d). Normalization “true” is also used in the Method

A /B synthesis.

Results of earlier analyses can still be reproduced with code version v105.0 (and later versions) by

using different parameters to control the kernel. Table 2d also tells how to do this.

The kernel is controlled by the following parameters:

(1) The standard deviation, o, of the radial basis function, as used in equations (1-4) in section
(M.1). We distinguish o = oy, the standard deviation given in bins or pixels, matching the

format of the atmospheric data, and o, = 300;,.
(2) The anisotropy factor, a, as described in section (M.2) and equations (5-12).
(3) The number of standard-deviations used, termed cutoff
as described for method B in section 3.3.4, from which kernel size (n,m) is derived. Alternatively,
the kernel can be controlled by prescribing
(1) kernel size (n,m),

(2) the standard deviation o = oy,
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(3) anisotropy an,

in which case the parameter cutoff will be calculated internally.

Knowing this, density field calculation can be implemented as for method B.
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3.3.6.3 Threshold Determination

Threshold determination in Method A depends on the following parameters (see 3.3.2-3.3.3):

fa = fa(bin = downsampling, bin_count, threshold_segment_length_downsampled, threshold_bias)

(20)

Threshold determination in Method B depends on the following parameters (see 3.3.4-3.3.5):

fB = fB(downsampling, threshold_segment _length,threshold_bias, threshold_sensitivity) (21)

where threshold_segment_length is the same as downsampling length in the original matrix,
threshold_bias is additive and threshold_sensitivity is multiplicative.

Note that threshold_bias, or any other additive component in the threshold determination, will

have to be scaled by the range-squared factor that comes in with any correction!

Method A uses

threshold[i] = threshold_bias 4+ 1 * (bin_count=max_density in 5x5 neighborhood)

threshold[i] = threshold_bias + 1 * (50% quantile in downsampled matrix at profile i)

= threshold bias + 1 * (50% quantile in downsampled matrix of bin_count=max_ density in

5x5 (bin x bin) neighborhood of orig mx)

where downsampled matrix is (for bin = 5)

a*(i,j) = max(a(i, jr) {iy=—2,2,j,=—2,2}) = Max(a(ir, jr) (i = [bin/2],[bin /2] jr=—[bin/2],[bin/2]})

In words, Method A proceeds as follows: Downsample the original density matrix by 5 (bin =
downsampling), by replacing the density value in a central point (7, j) by the maximal density in

its (5x5), or (bin x bin), neighborhood in the original density matrix.

This yields a matrix with 100 rows. The threshold is the 50th-largest value in the downsampled

matrix. This corresponds to a 50% quantile (the median). For the “new” 700-row original matrix,
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one needs to take care to handle the "NaN” values properly, that stem from the embedding of
the data profile into the DEM/Geoid reference frame. Note that the 50% quantile is taken in
the downsampled matrix. threshold_segment_length_downsampled is 1 in the examples from 2012
data (i.e. the along-track windowing effect is only 5 profiles, equal to 1400 m). By introducing the
variable threshold_segment_length_downsampled, we are allowing the possibility of using larger

along-track windows.

Here is the motivation for method A: If identifying ground, it is possible to find a window that
is definitely noise by going 150m above the ground. For clouds, this is not possible, since clouds
or aerosols can be encountered at any height above the surface. The idea of Method A is to
find a collection of small non-cloud regions (noise regions) that together form the noise area, and
the threshold functions to separate noise characteristics from cloud/aerosol/layer characteristics.
The downsampling process makes sure that we are not looking at individual pixels but at small

non-cloud areas. This is an important concept.
Now to method B:

Method B uses

threshold[i] = threshold_bias + threshold_sensitivity * (90% quantile in window at i)

i.e., the threshold is determined in the original matrix, leaving the downsampling concept out, but
using several profiles (downsampling profiles, e.g. 5 or 20 profiles) to create the window for taking
the quantile. This explains why the quantile is lower. However, the concept of the small non-clouds

is missing, and this will be reintroduced in the synthesized method A/B.
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The method A/B synthesis uses the following steps for threshold determination:

fa,B = fa,B(downsampling, bin_count, threshold_segment_length_downsampled, (22)
22
threshold_bias, threshold_sensitivity)

and proceeds by the following steps (labeled T.x for threshold-determination steps):

Step (T.1) Downsample original density matrix by a factor bin = downsampling (e.g. bin=>5)

Step (T.2) Take maximum value in a (5x5) (binxbin) neighborhood of the point (i,j), using the eqn in
the box below, where A = (a(i,j));; is the original density matrix and A* = (a*(¢,7))i; is

the downsampled matrix:

a*(i,7) = max(alix, jr) {i,=—2,2.j,——2,2y) = Max(a(ix, Jr){ix=—[bin/2),[bin 2] jr——[bin/2],[bin/2]})

Step (T.3) Use threshold_segment_length_downsampled for the window size in the downsampled matrix,

if additional averaging is desired (e.g. 20)

Step (T.4) Take a quantile (default 50% quantile) in downsampled matrix for

threshold_segment_length_downsampled columns

Step (T.5) Use the second equation with S=threshold_segment_length_downsampled

threshold[i] = threshold_bias + threshold_sensitivity * (50% quantile in window in down-

sampled mx at i)

threshold[i] = threshold_bias + threshold_sensitivity * (50% quantile for S columns in
downsampled matrix at column i)

= threshold_bias + threshold_sensitivity * (50% quantile in S columns in downsampled
matrix of bin_count=max_density in 5x5 (bin x bin) neighborhood of orig mx at col i in

downsampled mx)

Allowing the quantile to be a parameter, quantile Q, we get
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threshold[i] = threshold_bias + threshold sensitivity * (Q% quantile for S columns in
downsampled matrix at column i)

= threshold_bias + threshold_sensitivity * (Q% quantile in S columns in downsampled
matrix of bin_count=max_density in 5x5 (bin x bin) neighborhood of orig mx at col i in

downsampled mx)

To get fa from fa p:

1. In Step (T.1), set downsampling = bin = 5.

2. Keep Step (T.2) as is.

3. In Step (T.3), use threshold_segment_length_downsampled = 1.
4. In Step (T.4), use Q=50%.

5. In Step (T.5), use threshold_bias = 70 and threshold_sensitivity = 1.

To get fp from fa p:

1. In Step (T.1), set downsampling = 1.

2. Keep Step (T.2) as is. Note that since in (T.1) downsampling = 1, the downsampling by
maximum in a 1 x 1 neighborhood will default to the identity operation, i.e. with these

setting we are effectively skipping Steps (T.1) and (T.2).
3. In Step (T.3), use threshold_segment_length_downsampled = 5 or = 20 (not equal to 1).
4. In Step (T.4), use Q=90%.

5. In Step (T.5), use threshold_bias = 60 and threshold_sensitivity = 1 (or whatever, i.e.
different values were used in the sensitivity studies in the ATBD v.5 and thereafter in the

so-called “v10” sensi study).
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The threshold function for method A/B synthesis can be implemented based on the equations in

the framed boxes and uses the following python code:

There are two listings: (1) Threshold function call and (2) Threshold function definition.

### Compute thresholds

if len(algo.steps) == options.end_step: break

algo.start_step(Step(name=’Compute thresholds’,

vis_funcs=[plot_thresholds]))

algo.steps[-1].set_visualize(len(algo.steps) in visualize_steps)

thresholds = compute_thresholds(density, threshold_bias, threshold_factor,
downsample, quantile, threshold_segment_length)

globals () .update (locals())

algo.steps[-1].done ()

Listing 18: Python Code v106.0 (2016-08-17): Call compute-threshold function

def compute_thresholds(data, threshold_bias, threshold_factor, downsample, quantile,
threshold_segment_length):
n,m = data.shape
thresholds = zeros((1,m))
num_boxes = ceil(n/downsample)
maximums = zeros((num_boxes,m))

bottom_index = arange(0,n,downsample)

# Get maximums for each downsample—by—downsample bin for each column
if downsample > 1:
for i in xrange(m):
counter = 0
s2 = slice(max (0, i-floor(downsample/2)), min(m, i+floor(downsample/2)))
for bi in nditer (bottom_index):
s1 = slice(bi, bi + downsample -1);
max_temp = nanmax(datal[s1,s2])
if not max_temp:
maximums [counter,i] = nan
else:
if max_temp < O:
maximums [counter,i] = O

else:
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maximums [counter,i] = max_temp
counter = counter +1
else:

maximums = data

# Get quantile for each num boxes—by—2xthreshold segment_length—1 bin
for j in range(m):

sl = slice(max(0, j-threshold_segment_length), min(m, j + threshold_segment_length)
+1)

thresholds[0,j] = threshold_bias + mquantiles(maximums[:,sl],quantile) *

threshold_factor

return thresholds

Listing 19: Python Code v106.0 (2016-08-17): Compute-threshold function

These listing, taken from Python Code v106.0 (2016-08-17), are essentially identical to the listings
from v105 that were given in ATBD v6.0 (October 2015).

Parameter: The size of the bins in y-direction is still a fixed parameter (y,es = 30) and should be

changed t0 yres = 29.9 as determined August 2016.

Examples of Data Analyses Using Method A /B for Threshold Determination

Method Method A /B for threshold determination has been applied in all recent data analyses since
2015, especially in the current (August 2016) state-of-the art analyses of GLAS-based simulated
ICESat-2 data. Examples are given in section (8). The standard test runs for code implementation

are

(t3) for a double-density run (see Figure 30)

(t8) for a single-density run (see Figure 31-1)

Furthermore, this version is used in the study of automated adaptability and validation in the twice-
around-the-Earth-run in section (8) and in the sensitivity studies in section (9) [“The Movie”]. All

algorithm-specific parameters are given with the respective figures in sections (8) and (9).
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Interim notes on v104 (8 September 2015), compared to v105 (28 October 2015)

1. Check whether f4 creates a threshold vector for each column in the original mx (i.e. does the
whole operation for each profile) or for each column in the downsampled mx only (Note that
a new column vector is created for each column in the original mx after thresholding, but it

may use the same threshold for 5 columns).

2. The first implementation (v104) of the synthesized method fa p does the operation for each
column in the orig mx = for each profile, but only for every 5th index in height=row, to save

time.

3. Implemented in v104 using an offset k to calculate threshold_seg_length from 2k + 1 in the

downsampled mx
4. then threshold_seg_length|piz]|=bin x threshold_seg_length
5. and threshold_seg_length[m|=bin x threshold_seg_length x 280
6. since NRB values can be negative, replace negative NRB values by 0.
To illustrate how to use the method A /B synthesis, the new code version v104 is applied to GLAS-
data-based simulated ICESat-2 data, using all default values, and the result is shown in Figure AB.1.

The log is given on the next page. An application with better parameters and a new sensitivity

study are presented in sections (8) and (9), using v105.

Final mask: glas_nrb_profiles_1_to_10000_fup.txt 1e15
20000 [ ‘ ' ' '
5
15000 4
5 3
g -
= 10000 1, YN APPIY L . 2
i *"‘N’WM%:MJJ‘-‘ / qﬂMJ “:‘? ]
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5000 |- MM i \ 1 0
ﬂr TN ) I f‘ " -
";‘M».@J'L:. ' v L) - a N —
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alona track distance (meters)

Figure AB.1. Application of the new synthesized method A /B to simulated ICESat-2 data,
based on 2 orbits of GLAS data, NRB values, first 10,000 profiles. For log file, see next page.
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arce78-16-dhcp:plotsAB uch$ more glas_nrb_1_10000_test4.log

2015-08-31 18:01:14,974 - atmos_algo - INFO - Pixel resolution: 280x30 meters
2015-08-31 18:01:14,975 - atmos_algo - INFO - Plot directory: plots/glas_nrb_1_10000_test4
2015-08-31 18:01:14,975 - atmos_algo - INFO - Aniso factor(s) (l=isotropic): [10.0, 20.0]
2015-08-31 18:01:14,975 - atmos_algo - INFO - Sigma(s): [3.0, 6.0] pixels (vertically)
2015-08-31 18:01:14,975 - atmos_algo - INFO - Cutoff(s): [1.0]*sigma(s)

2015-08-31 18:01:14,975 - atmos_algo - INFO - Neighborhoods: [None] pixels

2015-08-31 18:01:14,975 - atmos_algo - INFO - Downsample: [5] pixels

2015-08-31 18:01:14,975 - atmos_algo - INFO - Threshold factors(s): [3.0, 2.0]%100%
2015-08-31 18:01:14,975 - atmos_algo - INFO - Base threshold(s): [70.0, 0.0]%100%
2015-08-31 18:01:14,976 - atmos_algo - INFO - Minimum cluster size: 600 pixels
2015-08-31 18:01:14,976 - atmos_algo - INFO - Threshold segment 1ength(s): [2, 2]
2015-08-31 18:01:14,976 - atmos_algo - INFO - Quantiles(s): [0.5]

2015-08-31 18:01:14,976 - atmos_algo - INFO - STEP 1

2015-08-31 18:01:14,976 - atmos_algo - INFO - Load data step starting

2015-08-31 18:01:18,352 - atmos_algo - INFO - Loaded ../../../data/GLAS_atlas_sim/glas_nrb_profiles_1_to_10000_fup.txt
2015-08-31 18:01:18,352 - atmos_algo - INFO - Load data step done

2015-08-31 18:01:21,738 - atmos_algo - INFO - STEP 2

2015-08-31 18:01:21,738 - atmos_algo - INFO - Compute density step starting
2015-08-31 18:01:21,768 - atmos_algo - INFO - Kernel shape: 7x9

2015-08-31 18:01:22,233 - atmos_algo - INFO - Compute density step done

2015-08-31 18:01:25,697 - atmos_algo - INFO - STEP 3

2015-08-31 18:01:25,697 - atmos_algo - INFO - Compute thresholds step starting
2015-08-31 18:05:20,907 - atmos_algo - INFO - Compute thresholds step done

2015-08-31 18:05:21,053 - atmos_algo - INFO - STEP 4

2015-08-31 18:05:21,053 - atmos_algo - INFO - Apply threshold filter step starting
2015-08-31 18:05:21,094 - atmos_algo - INFO - Apply threshold filter step done
2015-08-31 18:05:31,132 - atmos_algo - INFO - STEP 5

2015-08-31 18:05:31,132 - atmos_algo - INFO - Remove small clusters step starting
2015-08-31 18:05:31,240 - atmos_algo - INFO - Remove small clusters step done
2015-08-31 18:05:40,840 - atmos_algo - INFO - STEP 6

2015-08-31 18:05:40,840 - atmos_algo - INFO - Delete data step starting

2015-08-31 18:05:40,847 - atmos_algo - INFO - Delete data step done

2015-08-31 18:05:40,847 - atmos_algo - INFO - STEP 7

2015-08-31 18:05:40,848 - atmos_algo - INFO - Compute density step starting
2015-08-31 18:05:40,863 - atmos_algo - INFO - Kernel shape: 13x27

2015-08-31 18:05:43,098 - atmos_algo - INFO - Compute density step done

2015-08-31 18:05:46,410 - atmos_algo - INFO - STEP 8

2015-08-31 18:05:46,410 - atmos_algo - INFO - Compute thresholds step starting
2015-08-31 18:09:45,140 - atmos_algo - INFO - Compute thresholds step done

2015-08-31 18:09:45,244 - atmos_algo - INFO - STEP 9

2015-08-31 18:09:45,244 - atmos_algo - INFO - Apply threshold filter step starting
2015-08-31 18:09:45,280 - atmos_algo - INFO - Apply threshold filter step done
2015-08-31 18:09:51,635 - atmos_algo - INFO - STEP 10

2015-08-31 18:09:51,635 - atmos_algo - INFO - Remove small clusters step starting
2015-08-31 18:09:51,739 - atmos_algo - INFO - Remove small clusters step done
2015-08-31 18:09:57,307 - atmos_algo - INFO - STEP 11

2015-08-31 18:09:57,307 - atmos_algo - INFO - Delete data step starting

2015-08-31 18:09:57,314 - atmos_algo - INFO - Delete data step done

2015-08-31 18:09:57,314 - atmos_algo - INFO - STEP 12

2015-08-31 18:09:57,314 - atmos_algo - INFO - Combine masks pre-closing step starting
2015-08-31 18:09:57,342 - atmos_algo - INFO - Combine masks pre-closing step done
2015-08-31 18:10:08,349 - atmos_algo - INFO - STEP 13

2015-08-31 18:10:08,350 - atmos_algo - INFO - Compute confidence measure step starting
2015-08-31 18:10:11,668 - atmos_algo - INFO - Compute confidence measure step done
2015-08-31 18:10:14,692 - atmos_algo - INFO - Total running time: 9.00 minutes
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3.3.7 Quantile Calculation

During testing of the code implementation by the SIPS in October 2017, we discovered that the al-
gorithm used in quantile calculation can contribute significantly to the error in results between two
different code implementations. Care needs to be taken when using a library function (python, for-
tran or any other language). Library functions typically only differ in the interpolation step between
actually occurring values, but since near the threshold values used in the DDA the density values
are relatively scarce, this difference matters. The effect is illustrated in section (12) “Testing”. The

old and new algorithms are described here.
maquantiles

The original quantile implementation (v103.0-109.0) used python’s mquantiles function
(scipy.stats.mstats.mquantiles). The mquantiles function finds the empirical quantile for a data

array. Sample quantiles are defined by
Qp) =1 —=7) zj+7 zjn

where z; is the j-th order statistic of an array A, and v is a function of j = floor(n - p + m), of

m=a,+p-(1—a,—pp) and of g =n-p+m —j. The value p = p(k) is given by

p(k) = (k —ap)/(n+1—0ap— )

for some statistic order k of the data array. The mquantiles function takes values of o, and 3, as
optional inputs. If unspecified, the defaults values of ay, = 0.4 and 3, = 0.4 are used which give an
approximately unbiased quantile. We used these default values in our original implementation. For
more information see (https://docs.scipy.org/doc/scipy-0.19.1/reference/generated /scipy.stats.mstats.

mquantiles.html).
“Rounding”

A problem with the mquantiles function is that it only allows to specify continuous rather than
discrete functions for association of quantiles. A “discrete” function will only use those density

values that actually occur in the distribution, whereas a continuous function will interpolate between
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actually occurring values. As the closest option to a discrete function, we used linear interpolation
of values (see Figure 39-1 and 39-2) to test the sensitivity of quantile and hence threshold function

values to the quantile implementation.

The current version (v110.0) uses the term “Rounding”, referring to a discrete association function
for quantiles, which follows the definition of a quantile in its simple form. New code is written for

this, rather than using python’s mquantiles function.
A short description of the “rounding” quantile algorithm is as follows:

Given an array A and a quantile fraction p < 1, we find the the p-quantile of the array by first
ordering the array (lowest to highest magnitude) and removing any missing values. The size of the

array A with no missing values is given by n. The index i, of the p-quantile in A is then found by

ip = round(p * n)

Thus, the p- quantile of the data array A is given by

Q(p) = A(ip)

-
def compute_thresholds (image) :

mrmn

The compute_thresholds function defines the per profile threshold value along
track and sets the image.thresholds attribute

(n,m) = image.density.shape

image.thresholds = np.zeros((1,m))

# Extract necessary parameter values from image.parameters dictionary
threshold_window = image.parameters[’threshold_window’]

threshold_bias = image.parameters[’threshold_bias’]

threshold_factor = image.parameters[’threshold_factor’]

quantile = image.parameters[’quantile’]

# Mask density so we don’t introduce invalid data into thresholding
valid_density = np.ma.array(image.density, mask=image.valid_mask, fill_value=np.nan).filled

O
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# Loop through each profile and assign a threshold

for j in range(m):

sl = slice(max(0, j-threshold_window), min(m, j + threshold_window)+1)

# New quantile a la jesse, 1.e. nearest integer, 11/9/2017 (Tom)
quantile_data = valid_densityl[:,sl] # Data for which quantile is computed (i.e. a
column of coluns depending on window size)

quantile_data_1d = np.ravel(quantile_data) # turn the data into a 1D array
quantile_data_1d_nonans = quantile_data_1d["np.isnan(quantile_data_1d)] # remove nans
quantile_sort = np.sort(quantile_data_1d_nonans) # sort the data lowest to highest
quantile_length = len(quantile_sort) #number of entries in quantile data
quantile_index = int(round(quantile*quantile_length))

quantile_val = quantile_sort[quantile_index-1] # minus 1 since python index starts

at 0 (where FORTRAN starts at 1)

image.thresholds [O,j] = threshold_bias + quantile_val * threshold_factor

Listing 20: Python Code v110.0 (2017-11-17): Quantile Calculation as part of Threshold Calculation.
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3.4 Step 4: Removal of Small Clusters: Determination of Cloud Areas - Final

The idea of this step is to remove small clusters of points that are not actually clouds (artifact

removal).

After application of the density-based noise filter (in step 3), small clusters of noise points remain.
In this step, small clusters are removed. The search for neighbors in a cluster is carried out in 4
directions. In algorithm v4, the algorithm is applied with a cluster size of 300. Another common
value is 600. At this step, an iteration through the density field (resultant from step 3) is performed.
Whenever a cluster of size smaller than 300 is encountered, that cluster is removed. The result is a
density array dens_filtered_small — clust — removed, this is the region of clouds as identified by

the algorithm.
The set of points determined is dens_filtered_small — clust — removed

Parameter: the size of small clusters is 300 points or less (size_threshold = 300), in later version,
a size of 600 points is used. Cluster size is an algorithm specific parameter and varies as listed in

Tables 5 and 6.

In the current implementation (v106.0, 2016-08-17 and v105, October 2015), the “remove-small-
clusters” routine uses a built-in python function from the “morphology” package called

remove_small_objects. Documentation can be found at

http://scikit-image.org/docs/dev/api/skimage.morphology.html#skimage.morphology.

remove_small_objects

### Minimum cluster filter

if len(algo.steps) == options.end_step: break

algo.start_step(Step(name=’Remove small clusters’,
vis_funcs=[plot_boundary_masked_density]))

algo.steps[-1].set_visualize(len(algo.steps) in visualize_steps)

level_mask = 1ogica1_not(morphology.remove_small_objects(
logical_not(density.mask), min_size=min_cluster))

density.mask = level_mask

level_masks.append(level_mask)
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globals () .update (locals())
algo.steps[-1].done ()

Listing 21: Python Code v106.0 (2016-08-17): Remove small clusters.
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For earlier versions of the code, we developed a set of routines for small-cluster removal (also called:

remove artifacts), which is described in the following:

The listing for the small-cluster removal has three parts, because it is coded using two subroutines,

function 1 and function 2.

(1) Functionl for Small Cluster Removal (Neighbors Search)
(2) Function2 for Small Cluster Removal (Replace Values)

(3) Small Cluster Removal

define neighbors_search([i, j], binary_matrix):
# find non—zero neighbors of a pixel
# arguments:
# [i,j] — size 2 vector of indices

5 # binary matrix — binary matrix to search

# set neighbors to be a empty list

neighbors = []

10 # check to make sure the neighbor index is valid
if 1 < number_of_columns-1 and j < number_of_rows-1:
# check if neighbor index contains a 1:
if binary_matrix[i+1,j+1] == 1: neighbors.append([i+1,j+1])

# append adds the item to the end of the list neighbors

# check to make sure the neighbor index is valid
if i >0 and j > 0:
# check if neighbor index contains a 1:
if binary_matrix[i-1,j-1] == 1: neighbors.append([i-1,j-11)

20 # append adds the item to the end of the list neighbors

# check to make sure the neighbor index is valid
if i > 0 and j < number_of_rows-1:
# check if neighbor index contains a 1:
25 if binary_matrix[i-1,j+1] == 1: neighbors.append([i-1,j+1])

# append adds the item to the end of the list neighbors
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# check to make sure the neighbor index is valid

if i < number_of_columns-1 and j > 0:

30 # check if neighbor index contains a 1:

if binary_matrix[i+1,j-1] == 1: neighbors.append([i+1,j-1])

# append adds the item to the end of the list neighbors

# check to make sure the neighbor index is valid

if i < number_of_columns-1:

# check if neighbor index contains a 1:

if binary_matrix[i+1,j] == 1: neighbors.append([i+1,j])

# append adds the item to the end of the list neighbors

10 # check to make sure the neighbor index is valid
if i > 0:
# check if neighbor index contains a 1:
if binary_matrix[i-1,j] == 1: neighbors.append([i-1,j])

# append adds the item to the end of the list neighbors

# check to make sure the neighbor index is valid
if j < number_of_rows-1:

# check if neighbor index contains a 1:

if binary_matrix[i,j+1] == 1: neighbors.append([i,j+1])
50
# check to make sure the neighbor index is valid
if 3 > o0:

# check if neighbor index contains a 1:

if binary_matrix[i,j-1] == 1: neighbors.append([i,j-11)

# return all the neighbors found

return neighbors

.

Listing 22: Pseudo-Code v103 (2014-10-30): Functionl for Small Cluster Removal (Neighbors Search)

def neighbors_search(i,j,bin):
neighbors = []
i_len = len(bin)
j_len = len(bin[0])
if i < i_len-1 and j < j_len-1 and bin[i+1,j+1] == 1: neighbors.append([i+1,j+1])

if i > 0 and j > 0 and bin[i-1,j-1] == 1: neighbors.append([i-1,j-1])
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if i > 0 and j < j_len-1 and bin[i-1,j+1] == 1: neighbors.append([i-1,j+1])
if i < i_len-1 and j > 0 and bin[i+1,j-1] == 1: neighbors.append([i+1,j-1])
if i < i_len-1 and bin[i+1,j] == 1: neighbors.append([i+1,j])

if i > 0 and bin[i-1,j] == 1: neighbors.append([i-1,3j])

if j < j_len-1 and bin[i,j+1] == 1: neighbors.append([i,j+1])

if j > 0 and bin[i,j-1] == 1: neighbors.append([i,j-1])

return neighbors

Listing 23: Python Code v103 (2014-10-30): Functionl for Small Cluster Removal (Neighbors Search)

define points_to_value(list_of_points, value, binary_matrix):
# fill locations in matrix with a value
# arguments:
# list_of points — list of size 2 vectors containing indices

# binary _matrix — matrix to have elements filled

for points in list_of_points:

binary_matrix[points] = value

return binary_matrix
L

Listing 24: Pseudo-Code v103 (2014-10-30): Function2 for Small Cluster Removal (Replace Values)

def points_to_val(t,val,bin):
for pt in t:
bin[pt[0],pt[1]] = val

return bin

Listing 25: Python Code v103 (2014-10-30): Function2 for Small Cluster Removal (Replace Values)

Using the two functions listed above, the small cluster removal is the performed as follows:

-
define remove_small_clusters (Binary_matrix, size_threshold):

# Remove connected regions with less than minimum number of pixels.
# Arguments:
# Binary _matrix — binary matrix of cloud regions

# Size threshold — the minimum size of the shapes kept
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# declare Filtered matrix as a copy of Binary matrix

Filtered_matrix = copy(Binary_matrix)

10 [number_of_rows, number_of_columns] = shape(Binary_matrix)
# 1 iterates over integers from 0 to number. of_ rows
for i in 0 to number_of_rows:
# j iterates over integers from 0 to number._of columns

for j in 0 to number_of_columns:

# 1f the current point is has value of 1:
if bin[il[j] == 1:
#define search_list to contain the current point
search_list = [[i,j]]
20
#define total_list to contain all points in the current shape

total_list = [[i,j]]

#while there are still points to search:
25 while length(search_list) != 0:
#remove the last element of the search 1list

temp_i, temp_j = search_list.pop()

#find the immediate neighbors with value 1 around temp_1i,temp_J

30 temp_neighbors = neighbors_search([temp_i,temp_j],Filtered_matrix)

#Add all the new neighbors to the search list

search_list=cat(search_list,temp_neighbors)

35 #Add all the new neighbors to the total_ list

total_list = cat(total_list,temp_neighbors)

#Switch the current values of the new neighbors to 2 so they are
not found again.

Filtered_matrix = points_to_value(neighbors,2,Filtered_matrix)

#1f the number of points in the total shape is less then the
size threshold:
if length(total_list) < size_threshold:

#remove the points from the Filtered matrix be setting their
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values to 0

Filtered_matrix = points_to_value(total_list,0,Filtered_matrix)

#Replaces all the values of 2 to 1

replace(2,1,Filtered_matrix)

return Filtered_matrix

Listing 26: Pseudo-Code v103 (2014-10-30): Small Cluster Removal

-
def remove_small_clusters(binary_matrix, min_cluster):

for scan_i in xrange(len(binary_matrix)):
for scan_j in xrange(len(binary_matrix[0])):
if binary_matrix[scan_i,scan_j] == 1:

n = [[scan_i,scan_j]]

all n = [[scan_i,scan_j]l]

while len(n):
ni, nj = n.pop()
sys.stderr.write("%d,%d: neigh %d,%d\r" % (scan_i,scan_j,ni,nj))
t=neighbors_search(ni,nj,binary_matrix)
n+=t
all_n+=t

binary_matrix = points_to_val(t,2,binary_matrix)

if len(all_n) < min_cluster:

binary_matrix = points_to_val(all_n,0,binary_matrix)

return binary_matrix

Listing 27: Python Code v103 (2014-10-30): Small Cluster Removal
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At this point in the algorithm, the following are output:
[Output: {date}density_pts300.out]

(see Figure 6).

300 points filtered
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Figure 6. Cloud areas with density, final (after small-cluster removal). MABEL data set
02Apri12.02

92



3.5 Step 5: Output Data in Cloud Area (Cloud Mask)

The region of clouds dens_filtered_small — clust — removed (determined in step 4) is used as a

mask to identify the corresponding data values for cloud areas.

At this point in the algorithm, the following are output (see Figure 7):

[output: {date}data_pts300.png]
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Figure 7. Cloud areas with data, final (after small-cluster removal). MABEL data set
02Apr12.02
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Figure 81. Layer boundaries. M-ATLAS Data Set 02Apr12.02, Output using the so-called old
algorithm. Top: Yellow, Bottom: Blue, Cloud Region: Red, Up to 6 Atmospheric Layers. An example for MABEL-

based data is given in Fig. 19.

3.6 Step 6: Layer Boundaries (Top/ Bottom)

Cloud boundaries can be determined directly from the result of step 5.

The rules for identification of layers are simple:

(i) A layer must be at least 3 bins thick.
(ii) A gap between two layers must be at least 3 bins thick.
(iii) Counting layer dominates over counting gaps.

(iv) Layers are identified per profile.

However, analysis of the problem indicates that an explicit algorithm is needed to implement these

rules. Such an algorithm is presented here. Note that bins are counted from top to bottom and

layers are counted from top to bottom.

Old Algorithm [(v7.1) and before]

(see section 3.6 “Step 6: Layer Boundaries (Top/Bottom)” in the ATBD, v7.1., p. 74ff.// (atbd.atmos.icesat2.20160
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1. Outer loop: move along track

2. Inner loop: move along a vertical profile, from top to bottom, in the binary cloud mask. The

mask has “1” for cloud, “0” for non-cloud.
3. Identify the top of a layer (Layer_Top in Table 1) as the location of a 1 in a sequence of 0-1.

4. Identify the bottom of a layer (LayerBot in Table 1) as the location of a 1 in a sequence of
1-0.

5. If two layers are separated by less than 3 bins (90m), they will count as one layer (i.e. the

area between the two layers will be considered to be inside one layer).
6. A layer must be at least 3 bins thick (90m).

7. There are a maximum of 6 layers expected, based on knowledge in atmospheric sciences.
Hence each variable that is associated with cloud layers is a 6-component vector for each of
the three beams (Layer_bot, Layer_top and associated flags, attributed and optical depths,

see Table 1 in section 2).

Motivation for an Explicit Algorithm
There are two problems with the old algorithm:

(a) Number of layers: There can be more than 6 layers, as found in several examples of ICESat-2
data simulated from GLAS data. In previous work on layer detection in atmospheric lidar data,
6 was the maximal number of layers that can be identified (Steven Palm), hence 6 was used as
the maximal number for layers on the product ATL09. The reason that more than 6 layers can
be detected is most likely a result of the ability of the DDA to detect tenuous cloud layers. The
number of possible layers has already been increased to 10 (October 2017) by SIPS. Note that

ground counts as a layer here.
(b) Identification of layer boundaries:

While the rules for identification of layers are simple, the old algorithm (listed above) can miss
“loner bins” on top of an identified cloud, because it performs a pass in only one direction. The
new algorithm consists of two passes, a downward pass and an upward pass, each resulting in a

mask, and the joint mask of the 2 passes gives the layer boundaries.
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An explicit bi-directional algorithm for identification of atmospheric layer boundaries

(layerbot, layertop), based on the final cloud mask calculated by the DDA
This algorithm is first correctly implemented in code version v110.0 and developed for v109.0.

To avoid missing “loner bins” above a determined cloud layer, a new, bidirectional layer detection
routine is implemented. The algorithm accomplishes this by running a pass of the current version
of the layer detection routine in two directions - from the top down, and the bottom up - and
saving a partial cloud layer mask from each pass. Then, the union (logical or) of both the upward
pass cloud layer mask and downward pass cloud layer mask will produce cloud layers that satisfy
rules (i)-(iv). The differences between a one-directional and a bi-directional layer-identification

algorithm are exemplified in Table 1.
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Bin Number | Binary Cloud Mask | Downward Pass Layer Mask | Upward Pass Layer Mask | Union
1 0 In Cloud In Cloud In Cloud
2 0 In Cloud In Cloud In Cloud
3 0 In Cloud In Cloud In Cloud
4 1 — — —

5 1 — — —
6 1 — — —
7 0 — In Cloud In Cloud
8 1 — In Cloud In Cloud
9 0 — In Cloud In Cloud
10 1 — In Cloud In Cloud
11 0 In Cloud In Cloud In Cloud
12 0 In Cloud In Cloud In Cloud
13 0 In Cloud In Cloud In Cloud
14 1 In Cloud — In Cloud
15 0 In Cloud — In Cloud
16 1 In Cloud — In Cloud
17 0 In Cloud — In Cloud
18 1 — — —
19 1 — — —
20 1 — — —

Table 1: An example of the improved layer detection routine including all potential loner bins in the appropriate

cloud layer by taking the union of two cloud layer masks. The directional layer masks are produced by running a

version of the current layer detection routine in both the upward, and downward direction. Binary Cloud Mask is

the output of Step 5 of the DDA (the final mask). 0 - cloud, 1 - not cloud.
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Algorithm and Pseudo Code

Cloud boundaries are determined directly from the final binary cloud mask resulting from Step 5

as follows:

Step 1: Produce Complete Cloud Layer Mask

1. Outer loop: move along track

(a)

Inner loop (Upward Pass): move along the given vertical profile, from bottom to top, in
the binary cloud mask. If 3 consecutive non-masked bins (0s) are encountered, enter a
cloud layer. Once in a cloud layer, if 3 consecutive masked bins (1s) are encountered,

exit the layer. This produces the upward partial cloud layer mask.

Inner loop (Downward Pass): move along the given vertical profile, from top to bottom,
in the binary cloud mask. Perform the same operations as in the upward pas loop to

produce a downward partial cloud layer mask.

2. Take the union of both partial cloud layer masks to create a complete cloud layer mask.

Step 2: Determine Layer Tops and Bottoms, and Tally Total Layers Found

1. Outer loop: move along track

(a)

Inner loop: move along the given vertical profile, from top to bottom, in the complete
cloud layer mask produced in Step 1 above. When the complete cloud layer mask
indicates that a cloud layer has been entered, add one to the tally of total layers found,
and mark this as the top of the appropriate layer. When the complete cloud layer mask
indicates that cloud layer has been exited, mark this as the bottom of the appropriate

layer.
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Examples

The following results were produced using parameter set (t8), and are compared with corresponding
results from the current method for reference. Note that in all figures, the colored dots indicate

the layer tops and bottoms.

Note that in Figures 8-2 and 8-4, when reviewing an entire dataset, differences between the two al-
gorithms are not immediately obvious. However, upon closer inspection, we see that small numbers
of bins have been added to the tops of cloud layers in the Figures 8-2 and 8-4, indicating that the
old layer detection routine does indeed mis-represent cloud layers by excluding loner bins. This is
made apparent in the zoomed in Figures 8-3 and 8-5, where clear additions are visible to the tops
of select cloud layers. That is, with the addition of an upward pass of the layer detection routine,

we do in fact gain valuable additional information about the location of cloud layers.
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(a) The combined cloud layer binary mask from ATLO04_short_night_run.h5 produced with the old (v108.1)

layer detection method.
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(b) The combined cloud layer binary mask from the same dataset, produced with the new (v109.0) method.
Figure 8-2. Macro Comparison - Red boxes indicate the zoomed regions in Figure 8-3.
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(a) Zoomed in on the combined cloud layer binary mask from ATL04_short_night run.h5 produced with the
old (v108.1) layer detection method.

(b) Zoomed in on the combined cloud layer binary mask from the same dataset, produced with the new

(v109.0) method.
Figure 8-3. Micro Comparison - Red boxes highlight differences.
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Combined Cloud Layer Binary Mask
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(a) The combined cloud layer binary mask from a small 700x250 sample dataset, produced with the old
(v108.1) layer detection method.
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(b) The combined cloud layer binary mask from the same dataset, produced with the new (v109.0) method.
Figure 8-4. Macro Comparison - Red boxes indicate the zoomed regions in Figure 8-5.
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(a) Zoomed in on the combined cloud layer binary mask from a small 700x250 sample dataset, produced

with the old (v108.1) layer detection method.

(b) Zoomed in on the combined cloud layer binary mask from the same dataset, produced with the new

(v109.0) method.
Figure 8-5. Micro Comparison - Red boxes highlight differences.
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1

2

Side Note on Limiting the Total Number of Cloud Layers. Given that there are a total of 467
valid bins (in the vertical direction) in an NRB object, with each cloud layer occupying a minimum
of 6 bins, the theoretical maximum number of cloud layers that the algorithm could find is actually

77. The maximal number of layers that can be output on the ATL09 product is 10.

Python Implementation

def compute_cloud-layers(cloud-image):
By: Levi Kurlander
Date: 2 October 2017

The following is a version of the compute_cloud_layers() formula for the ATMOS DDA, fixed to retroactively
add ’loner’ bins above a determined cloud layer back into the layer. It does this by running through each
vertical profile both top—>bottom, and bottom—>top, creating a unique mask on each pass. The final cloud

mask is the union (logical or) of the up and down mask. Finally, cloud layer tops and bottoms are calculated
using the final cloud masks. This version of compute_cloud_layers will require over twice the computation
time of (Gavin’s) previous version, but will determine all cloud layers EXACTLY to the specifications

outlined in the ATBD.

97979

max_layers = cloud-image.cloud_layer_tops.shape[0]

(n,m) = cloud_image.combined_decluster_mask.shape

cloud_layer_mask_down = np.zeros((n,m), dtype=bool)

cloud_layer_mask_up = np.zeros((n,m), dtype=bool)
for j in range(m):

#Pass in the upward direction.

incloud = False

for i in np.arange(n—1,2,—1):
if incloud == False: #requirements for given bin to be marked as part of a cloud layer
if cloud_image.combined_decluster_mask[i,jj==False and cloud_image.combined_decluster_mask[i—1,j]==
False and cloud_image.combined_decluster_mask[i—2,j]==False:
cloud_layer_mask_upli,j] = True #Set the cloud layer mask to indicate a cloud layer in this location
incloud = True
elif incloud == True: #requirements for a given bin to NOT be marked as part of a cloud layer

if cloud_image.combined_decluster_mask|i,jj==True and cloud-image.combined_decluster_mask[i—1,j]==
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39

40

True and cloud_image.combined_decluster_mask[i—2,j]==True:
incloud = False #we leave the cloud layer mask as is to indicate no cloud exists at this location
else :
cloud_layer_mask_upli,j] = True #If the requirements to leave a cloud layer are NOT met, set the

cloud layer mask to indicate a cloud layer in this location.

#Pass in the downward direction.

incloud = False

for i in np.arange(0,n—3,1):
if incloud == False: #requirements for given bin to be marked as part of a cloud layer
if cloud_image.combined_decluster_mask[i,jj==False and cloud_image.combined_decluster_mask[i+1,j]==
False and cloud-image.combined-decluster_mask[i+2,j]==False:
cloud_layer_mask_downli,j] = True #Set the cloud layer mask to indicate a cloud layer in this location
incloud = True
elif incloud == True: #requirements for a given bin to NOT be marked as part of a cloud layer
if cloud-image.combined_decluster_mask|i,j]==True and cloud-image.combined_decluster_mask[i+1,j]==
True and cloud_image.combined_decluster_mask[i+2,j]==True:
incloud = False #we leave the cloud layer mask as is to indicate no cloud exists at this location
else :
cloud layer_mask_downl[i,j] = True #If the requirements to leave a cloud layer are NOT met, set the

cloud layer mask to indicate a cloud layer in this location.

#Take the union (logical or) of the up and down cloud layer masks to create the final cloud mask.

cloud_layer_mask_combined = np.logical_or(cloud-layer_mask_up, cloud_layer_mask_down) # True indicates

locations where a cloud layer exists.

cloud_image.cloud_mask = “cloud_layer_mask_combined #since we want our final cloud mask to indicate False

where a cloud layer exists.

#Finally, we use the final cloud mask to calculate cloud tops and bottoms, and limit total number of layers.

for j in range(m):

k=0 #reset number of layers found in the current column
incloud = False
for i in np.arange(n—1,0,—1):

if k==max_ layers:

break
if incloud == False: #requirements to mark the top of a cloud layer.
if cloud_layer_mask_combined[i,j]J==True:
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59 cloud_image.cloud layer_tops[k,j] =i #set i as the index of the top of the kth cloud layer in the
jth column.

60 incloud = True

61 elif incloud == True: #requirements to mark the bottom of a cloud layer.
62 if cloud_layer_mask_combined|[i,jj]==False:
63 cloud_image.cloud_layer_bottoms[k,j]=i4+1 #set i+1 as the index of the bottom of the kth cloud layer

in the jth column.
64 incloud = False

65 k=k-+1
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Applications

This new algorithm for derivation of layer boundaries is applied to the examples of GLAS-based
simulated ATL04 data, for the test data set used in the sensitivity study (7000+ profiles (7143))

for the following parameter combinations:
(t8) single-density run deemed best in the 2016 state-of-the-art simulated GLAS-based ICESat-2
type data,

(t54) single-density run, best parameter combination for analysis of 2017-Oct version of GLAS-

based simulated ATLO04 data

(t56) double-density run, best parameter combination for analysis of 2017-Oct version of GLAS-
based simulated ATL04 data

(t64) double-density run, alternative best parameter combination for analysis of 2017-Oct version
of GLAS-based simulated ATL04 data (runl cluster size 200, otherwise same parameters as

in t56)
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Figure 8-5. Atmospheric layer boundaries. Applied to 7000+ (7143) profile synthetic data set representing
different cloud types and night-time/ day-time transition, 2017-Oct version of GLAS-based simulated ATLO04 data.
Blue - layer tops, red — layer bottoms.

(a) t8, (b) t54, (c) t56, (d) t64. See Tables 5 and 6 for parameters.
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Figure 8-5 shows several things:

(1) The new algorithm that absorbs loner bins into the cloud layers yields layer-tops and layer-
bottoms that have a natural appearance. This means, cloud layers are connected over large height

ranges.

(2) The parameter combination, t8, which worked best for the 2016 state-of-the-art simulated
GLAS-based ICESat-2 type data, renders ill-defined layer-tops and bottoms especially at day time
(right part of the data set). Some false positives appear, especially around the layer boundaries.
This indicates that the parameters that determine the threshold function do not match the char-
acteristics of the data any more. The change in NRB value determination (ATL04) requires a new

set of parameters.

(3) The parameter combination, t54, is the best result for a single-density run, as determined in
the sensitivity study. The layer boundaries are much better defined than in in the ¢t8 run. However,
the layer boundaries are still somewhat ragged for night-time data and sub-optimally defined for
day-time data. As the sensitivity study shows, it is not possible to retain tenuous clouds, while

suppressing false positives, using a single-density run.

(4) This necessitates using a double-density run, which allows to identify optically thick layers in
the first run (using a smaller kernel and a very strict threshold function) and, in the second density
run, identify the tenuous clouds, atmospheric layers and most clouds during day-time conditions
(using a larger kernel and a less strict threshold function). Notice that tenuous clouds (on the left)
are now connected in the vertical direction, except for likely natural gaps, rain (?) falls out of the
layer at a possible inversion (aerosols with clouds at the inversion height), but no false positives
remain and the layer tops during day-time are smooth. Single clouds are retained during day-time
conditions. t56 is the parameter combination used in most experiments in October/November 2017

(and deemed best for current state-of-the-art data characteristics in ATLO04).

(5) Varying parameters around those of t56 and trouble-shooting remaining differences between
CU code and SIPS code, we noticed that a smaller cluster size in runl (200 rather than 300 pixels)
retains all good characteristics of t56 and appears to slightly improve them. The cluster size of 200
also renders the algorithm more robust (in the sense that all small speckles are already filtered out
and first-order cloud layers are more continuous). This is (¢64). Parameters are otherwise the same

as in (t56). Note this may be good to know in testing, going forward, as the CU declustering step
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and the SIPS declustering step employ similar, but not the exact same function.
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3.7 Step 7: Layer Density, Density Sum per Vertical Profile and Other Derived

Parameters

Layer density (Layer_Dens in Table 1) is calculated as the sum of density values per column, in
each of the maximally 6 layers. If two density runs are used, then densityl will be available for
all layers (also those identified in density run 2) and density2 will be available only for the layers

identified in density run 2.

Density per vertical profile is calculated as the sum of the density values in all identified layers
for each along-track location (sum of density values in cloud regions). This value gives physical

meaning to the density approach. (Column_Dens1(3), Column_Dens2(3)).

The sum of density values per vertical profile is related to the optical depth used in atmospheric
sciences. However, it is not the same as optical depth, because the recorded data only extend to
about 14 km above the Earth’s surface, while derivation of optical depth requires recording the
entire atmospheric column in a given location. A function relating column sum of density to column

optical depth will be determined in work in progress of U. Herzfeld, S. Palm and Y. Yang.

Other parameters. Discrimination of a blowing snow layer from surface returns in areas without
blowing snow, based on density, appears feasible, but test data are needed to test and confirm this

and specify thresholds.

Classification of types flayers into optically thin and optically thick clouds, aerosols and blowing
snow appears equally possible and is a matter of ongoing research. Space for variables to output

these results is reserved to simplify software development (see Table 1).

During the mission, the DDA will be applied to atmosphere data in near-real time, as the data
come in. If the DDA is additionally applied to calibrated data, then comparisons of layer density

across the life of the mission will become possible.
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3.8 Flow of Algorithm Steps

For method version A (2012 MABEL Data Analysis), the flow of algorithm steps is illustrated
in the algorithm diagram (A) and in the listing “Density-dimension algorithm (version A, code

version v6)”.

filename > load_data

3

determine_thresholds (A) fe——

normalize=false P compute weight_matrix

v

compute_binary_mask

weight_matrix threshold_bias

¢

—»| compute_density

binary_matrix

neighborhood

density_matrix

rermove_small_clusters size_threshold

Y

bin > downsample

filtered_rmatrix

downsampled_density

Algorithm Diagram, Method Version A
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data = load_data(filename)
masks = []
for i in 1 to num_passes:
neighborhood = neighborhood_list[il]
am = a_m_list[i]
sigma = sigma_list[i]
weight_matrix = compute_weight_matrix(neighborhood, a_m, sigma, normalize=False)
density_matrix = compute_density(data, weight_matrix)
downsampled_density = downsample(density_matrix, neighborhood, bin)
thresholds = determine_thresholds(downsampled_density, bin_count, neighborhood)
initial mask = compute_binary_mask(density_matrix, threshold_bias, thresholds)

masks . append (remove_small_clusters(initial_mask, size_threshold))

combined_mask = logical_or (masks)

Listing 28: Pseudo-Code: Density-dimension algorithm version A v6

This describes the option of using density once. For using density twice (see section (3.10)), every
step after “load data” is applied again in a second run after replacing the data in the masked out
regions with zeros. Note that running density twice is not needed for 2012 MABEL data analysis,
the same global parameters were used for all examples and the auto-adaptive thresholding provided
good results, as seen in Figures 1-9 and 11-12. The number of density runs is passed to the code as
a parameter num_passes, the value of parameter num_passes is typically equal to 1 or 2 (see Listing

27).
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For method version B (2013 M-ATLAS Data Analysis), the flow of algorithm steps is illustrated

in the algorithm diagram (B) and in the listing “Density-dimension algorithm (version B, code

version v103)”.

> load_data

v v

compute_binary_mask

>

compute_weight_matrix

weight_matrix
(kernel_matrix)

Y

compute_density

density_matrix

binary_matrix

remove_small_clusters

A 4

>

determine_thresholds (B)

)
=
4
.
.7
‘
—
=

filtered_matrix

Algorithm Diagram, Method Version B



data = load_data(filename)
masks = []
for i in 1 to num_passes:
neighborhood = neighborhood_list[il]
am = a_m_list[i]
sigma = sigma_list[i]
weight_matrix = compute_weight_matrix(neighborhood=None, a_m, sigma, normalize=True)
density_matrix = compute_density(data, weight_matrix, neighborhood)
thresholds = determine_thresholds(density_matrix, threshold_bias, threshold_sensitivity,
window)
initial mask = compute_binary_mask(density_matrix, threshold_bias, thresholds)

masks . append (remove_small_clusters(initial_mask, size_threshold))

combined_mask = logical_or (masks)

Listing 29: Pseudo-Code: Density-dimension algorithm version B v103

This describes the option of using density once, for using density twice (see section (3.10)), every
step after “load data” is applied again in a second run after replacing the data in the masked out
regions with zeros. Note that running density twice is applied in 2013 M-ATLAS data analysis, the
same global parameters were used for all examples and the auto-adaptive thresholding provided
good results, as seen in Figure 19. The number of density runs is passed to the code as a parameter

num_passes, the value of parameter num_passes is typically equal to 1 or 2 (see Listing 28).
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For the integrated method version A /B (v105), the flow of algorithm steps is illustrated in the
algorithm diagram (A/B). See also Table 2d.

> load_data

v v

compute_binary_mask

compute_weight_matrix ) )
- pute_weight_| binary_matrix

weight_matrix
(kernel_matrix)

remove_small_clusters

P compute_density

filtered_matrix

density_matrix

Y

determine_thresholds (B)

SOEDLOTe Do

Algorithm Diagram, Method A /B Synthesis
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3.9 Adjustable Parameters

The algorithm includes adjustable parameters, as given in the following table. The effect of some

of these parameters on the classification results is examined in sensitivity studies in section (7), (9)

and (10).

Adjustable Parameters in the Density-Dimension Algorithm

(Method Version A)

Variable

Value

Explanation

Section

Notes

num-_passes

1or2

number of density runs

3.10

r=rl, neighborhood

3

radius 1, search radius for den-
sityl, results in neighborhood
boxes of size 2r+1

2.2:M.2

larger for 2013
r2 data

r=r2 , neighborhood

radius 2, search radius for den-
sity2, results in neighborhood
boxes of size 2r+1

2.2:M.2

only used if den-
sity is run twice,
larger for 2013
r2 data

bin, downsampling

downsampling window size for
noise area determination

3.3.2

don’t
this

change

bin_count

50

number of bins that form the
noise area set (50 bins of size 5
by 5), 50 lowest values used for
threshold determination for noise
regions

3.3.2

threshold_segment _length

along-track size of the segment
for which a noise-threshold is
determined (1 column of the
downsampled matrix, equal to 5
columns of the original matrix,
equal to 1,600 meters)

3.3.2

threshold_bias

70

threshold-bias

3.3.3

size_threshold

300

the size of small clusters is 300
points or less

34

On, S, sigma

140

standard-deviation (a parameter
that affects the density kernel)

2.2:M.2

see  sensitivity

study

squish_matrix

diag(0.3, 1)

anisotropy (a parameter that af-
fects the density kernel, see sen-
sitivity study)

2.2:M.2

see
study

sensitivity

Table 2a
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Adjustable Parameters in the Density-Dimension Algorithm (Method Version B)

Variable Value(s) | Explanation Section Notes
num-_passes lor2 | number of density runs (first 3.10
value for run 1, second value
for run 2)
A, &M 10,20 anisotropy factor 2.2:M.2,3.2 | 2 values for
2 density runs
On, S, Sigma 3,6 standard-deviation (a parame- | 2.2:M.1, 3.3.3 | see sensitiv-
ter that affects the density ker- ity studies
nel) (section  7,9);
2 values for
2 density runs
1 6 radius 1, search radius for den- 3.3.4-3.3.5 value calcu-
sityl, results in neighborhood lated from o,
of size 2ro +1 =13 and a,,
T large radius 2, search radius for den- 3.3.4-3.3.5 value calcu-
sity2, results in neighborhood lated from oy,
of size 2r9 + 1 and a,,
window 20, 20 | along-track size of the segment 3.3.3 20 used in both
for which a noise-threshold is runs
determined (equal to 5600 me-
ters)
threshold_bias 60,0 threshold-bias determines 3.3.3 2 values for
overall density sensitivity level 2 density runs
threshold_sensitivity 1,1 adjusts sensitivity to local 3.3.3 2 wvalues for
variation 2 density runs
size_threshold 600, 600 | the size of small clusters is 600 3.4 600 wused in
points or less both runs
normalization T/F true normalization option in weight 2.2:M.3

matrix for density function is
applied

Table 2b

Note: Values given here are used for the example given in section 7.2 that demonstrates that the algorithm

will auto-adapt to different conditions (so-called triple data set). Other values used in the sensitivity studies.
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python atmos_algo.py --help
Usage: atmos_algo.py [options] datafile

Options:
-h, --help show this help message and exit
-o DIR, --output-dir=DIR
Output directory

-n DIR, --name=DIR Series/experiment identifier
-v, —-verbose Debug logging level mode
-e END, --end=END Stop after END points

-S END, --end-step=END
Stop after END steps
-g, ——visualize Show interactive visualizations
-G STEPS, --visualize-steps=STEPS
STEPS to visualize only
-p, ——save-plots Save plots visualizations
-1 FILE, --log=FILE Write log to FILE
-a ANISO_FACTOR, --aniso-factor=ANISO_FACTOR
Anisotropy factor. Multiple values will be applied to hierarchy
of densities.
-w NEIGHBORHOOD, --neighborhood=NEIGHBORHOOD
Prescribe the neighborhood of the kernel in pixels.
Default is NONE, and calculation from SIGMA, CUTOFF, ANISO_FACTOR.
Multiple values will be applied to hierarchy of densities.
-d DOWNSAMPLE, --downsample=DOWNSAMPLE
Downsample factor. Default is 5.
-s SIGMA, --sigma=SIGMA
Standard deviation of Gaussian kernel (meters).
Multiple values will be applied to hierarchy of densities.
-c CUTOFF, --cutoff=CUTOFF
Cut off Gaussian kernel after number of CUTOFF stddevs. Default is 2.
Multiple values will be applied to hierarchy of densities.
-t THRESHOLD_FACTOR, --threshold_factor=THRESHOLD_FACTOR
Adaptive factor for threshold local quantile. Default is 1. Multiple
values will be applied to hierarchy of densities.
-T THRESHOLD_BIAS, --threshold-bias=THRESHOLD_BIAS
Base threshold for threshold. Multiple values will be applied to
hierarchy of densities.
-m MIN_CLUSTER, --min-cluster=MIN_CLUSTER
Minimum cloud size in pixels. Default is 300.

--no-r2 Remove r2 correction
--no-bg Remove bg correction
--no-bgr2 Remove both r2 and bg correction
--correct-power Apply r power correction (r~0.6)

Table 2¢c: Parameters for algorithm Method B (code version v103)
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Adjustable Parameters in the Density-Dimension Algorithm (Method Version A /B, v106)

Variable Value(s) | Explanation Section Notes
num_passes lor2 number of density runs (first 3.10
value for run 1, second value
for run 2)
G, &-M 10,20 anisotropy factor (in meters) 2.2:M.2,3.2 | 2 values for
2 density runs
o, s, sigma, ¢ = oy, 3,6 standard-deviation (a param- | 2.2:M.1, 3.3.3 | see sensitivity
Om = Yres * Obin eter that affects the density studies  (7,9);
kernel). Given in pixels in y- 2 values for
direction 2 density runs
cutoff 1,1 number of std-deviations used | 2.2:M1, 3.3.3 | see sensitivity
after which kernel size is cut studies  (7,9);
off 2 values for 2
density runs
Tl 3 kernel size in x-direction for | 3.3.4-3.3.5 | calculated
run 1, results in neighborhood from o,, am
of size my =2r1, +1=7 and cutoff
Tly 3 kernel size in y-direction for | 3.3.4-3.3.5 | calculated
run 1, results in neighborhood from o, and
of sizen; =2r, +1=7 cutoff
T 12 kernel size in x-direction for | 3.3.4-3.3.5 | calculated
run 2, results in neighborhood from o,, am
of size mo = 2r9, +1 =25 and cutoff
T2y 6 kernel size in y-direction for | 3.3.4-3.3.5 | calculated
run 2, results in neighborhood from o,, and
of size n; = 2rpy, +1 =13 cutoff
downsampling, d 1,1 downsampling window size for 3.3.3-3.3.5 default 5
noise area determination
threshold bias, T 60E+13,0 | threshold-bias determines 3.3.3 2 values for
overall density sensitivity level 2 density runs
threshold _sensitivity, t 1,1 adjusts sensitivity to local 3.3.3 2 values for
variation 2 density runs
size_threshold 600, 600 | the size of small clusters is 600 3.4 600 wused in
points or less both runs
threshold segment length, 2,2 along-track size of segment for 3.3.3 default 2
L which a noise-threshold is de-
termined
quantile, q 0.75, 0.75 | quantile of maximum densities 3.3.6 default 0.5
for threshold determination
normalization T/F true normalization option in weight 2.2:M.3
matrix for density function is
applied
correct-power p optional power correction for 7.1 range mul-

aircraft data

tiplied with
r96 for r > 1,
effectively 714
instead of r2

Table 2d

Note: Values given are ezamples, see sections 7.2 and 9. Other values used in the sensitivity studies.
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3.10 Running Density Twice

Running density twice serves as a way to distinguish mathematically between optically thin and
optically thick cloud layers. Different settings of the neighborhood are applied. For example, a
smaller neighborhood run first will detect optically dense, spatially thin cloud layers. In the next
step, the area of dense clouds is replaced by points with the spatial characteristics of the noise area,
or noise bin. In recent versions of the code (v6, v103), the area of dense clouds is simply masked
out. In the next step, density is calculated, but for a larger neighborhood. This allows detection
of the optically thin, spatially thick clouds. Next, both the areas of optically thick and optically
thin clouds are combined (joint set simply). — This concept was applied to some of the simulated
ICESat-2 data, based on GLAS data. Figure 9 shows the result of cloud detection running density
once. Figure 10 shows the result of cloud detection running density twice, and since thin clouds

and thick clouds are distinguished, the latter is actually a cloud classification.

The analysis of 2013 range? and background-corrected M-ATLAS data also applies “running density

twice”, see section (6).

Computational note. The simplification in the code/pseudo-code of masking out the cloud area of
the first density run and replacing it with zeros (rather than noise values) may lead to edge effects
around the areas of the clouds determined in the first run. This may be solved by a method such

as folding the kernel over. Implementation and testing of this smaller improvement is TBD.

Note (2018-Dec-19). The option of “running density twice”, developed in 2013, was not deemed
necessary for optimized data analysis until 2017/2018 and is now adopted as a component of the
operational code for (post-launch) ICESat-2 data. This is based on a sensitivity study of 2017-
Oct Version of GLAS-based simulated ATL04 data (section 10) and a sensitivity study of the first
post-launch data collected with the ICESat-2 ATLAS instrument (section 15). As a side note, the
re-institution of “running density twice” in the operational code for post-launch data shows that it

is a good idea to keep old algorithm components in the ATBD.
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Simulated Data
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Figure 9. Cloud detection through application of the density-dimension algorithm with one
density run to a high-noise data set (Data: Simulated ATLAS data based on GLAS 532 nm
data, high noise (0.5 Mhz)).

(1) Simulated ATLAS data based on GLAS 532 nm data

(2) Density

(3) Binary map

(4) Cloud regions - data
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Cloud Densities
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Figure 9 ctd. Cloud detection through application of the density-dimension algorithm with
one density run to a high-noise data set (Data: Simulated ATLAS data based on GLAS 532

nm data, high noise (0.5 Mhz)).
(5) Cloud regions — Density (recalculated)
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Simulated Data
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Figure 10. Cloud Classification through application of the density-dimension algorithm with
two density runs to a high-noise data set (Data: Simulated ATLAS data based on GLAS 532
nm data, high noise (0.5 Mhz)).

(1) Simulated ATLAS data based on GLAS 532 nm data

(2) Density (small search neighborhood)

(3) Binary map (dense clouds)

(4) Density (large search neighborhood; no dense, stratified clouds)
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Cloud Boolean Values
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Figure 10, ctd. Cloud Classification through application of the density-dimension algorithm
with two density runs to a high-noise data set (Data: Simulated ATLAS data based on GLAS

532 nm data, high noise (0.5 Mhz)).
(5) Binary map (less dense clouds)

(6) Binary map (all clouds)

(7) Cloud regions — Data (all clouds)

(8) Cloud regions — Density (recalculated); red: optically dense clouds; green-blue: optical thin clouds (ground at

bottom)
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Code for Running Density Twice

The first run is aimed at detection of optically dense, spatially narrow clouds, whereas the objective

of the second run is to detect tenuous cloud layers and aerosols.

For a double-density calculation, one needs to remove the high density photons (corresponding to
dense clouds) identified in the first cloud determination (density calculation, threshold function
application and small-cluster removal) before the second cloud determination. The second run will
typically use a larger kernel (a kernel with larger dimensions) and possibly a higher anisotropy

value.

### Delete data
if len(algo.steps) == options.end_step: break
algo.start_step(Step(name=’Delete data’,

vis_funcs=[1))
algo.steps[-1].set_visualize(len(algo.steps) in visualize_steps)
combined_mask = I‘educe(logical_and, level_masks) .astype(bool)
histo[logical_not(combined_mask)] = 0
globals() .update (locals())

algo.steps[-1] .done()

Listing 30: Python Code v106.0 (2016-08-17): Remove high density photons from first density calculation.

After the second density run finds photons identified as clouds, the results must be combined with

those from the first run.

### Combine layers before closing
if len(algo.steps) == options.end_step: break
algo.start_step(Step(name=’Combine masks pre-closing’,
vis_funcs=[plot_boundary_masked_counts_final,
plot_boundary_masked_density_finall))
algo.steps[-1] .set_visualize(len(algo.steps) in visualize_steps)
raw_histo.mask = combined_mask

globals () .update (locals())

algo.steps[-1].done()

Listing 31: Python Code v106.0 (2016-08-17): Combine results from the two density runs.
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4 Application to 2012 MABEL Data

In this section we give examples of the application of algo version v4 to simulated ICESat-2 data

based on MABEL data.

Example in Figure 11 demonstrates the method. Comparison with CPL data shows that we got all
the clouds right (see, section (4.5) Validation). Data are day-time data (day-time data constitute the
more difficult case compared to night-time data, because of the presence of ambient light, resulting

in high noise.

The example in Figure 12 includes night-time data and day-time data (and shows a much larger
section of the MABEL-data track). The “hump” near the rhs of the plot is a crossing of Greenland.
The power of the algorithm really shows where the reflectance-based noise over Greenland increases,
but clouds can still be detected. In more technical words, the capability of the density-dimension
algorithm allows automated adjustment of the noise threshold to changing environmental condi-
tions, including increased reflectance over the Greenland inland ice and change from night-time to
day-time observations. (This is not possible with an a-priori noise-bin algorithm, even using the

density-part of the algorithm).
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Figure 11. Analysis of day-time data (data set for 12April12.01, simulation set 01, based
on MABEL atmosphere data collected 12April 2012). Results of density-dimension algorithm
version v4.

a) Data (data.png)

b) Density (dens5.png), uses r1 =5

(

(

(c) "Density filtered” - Density-dimension algorithm applied (bin5.png)

(d) 7300 points filtered” - Cloud areas with density; after application of small-cluster removal (density_pts300.png)
(

e) 7300 points filtered” - Data in the same region that is seen in (d) (data_pts300.png)
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Figure 12. Analysis of night-time data and day-time data (data set for 02Apr12.03, simula-
tion set 03, based on MABEL atmosphere data collected 02April 2012). Results of density-
dimension algorithm version v4. The hump on the right is a crossing of Greenland.

(a) Data (data.png)

(b) Density (dens5.png)

(c) "Density filtered” - Density-dimension algorithm applied (bin5.png)

(d) 7300 points filtered” - Cloud areas with density; after application of small-cluster removal (density_pts300.png)
(e) 7300 points filtered” - Data in the same region that is seen in (d) (data_pts300.png)
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5 Validation

In this section, we include some visual quality checks of the algorithm performance. Figure (4.13)
highlights an area of optically thin clouds, that can be detected in ATLAS night-time data using

the density-dimension algorithm.

Layer Heights using ATLAS Simulated
Data — nght - Den5|ty Dlmen5|on

ATLAS Night
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Figure 13. Detection of clouds in MABEL-based ATLAS day-time data using the Density-
Dimension Method. MABEL data set 02Apr12.02 (same data set as used in the algorithm
description, Figures 1-8).

During some of the 2012 MABEL flights, Cloud Physics Lidar (CPL) data were collected simulta-
neously. This allows a visual comparison of MABEL data analysis results with CPL data, which
can be used to examine the performance of the cloud-layer-detection algorithm. In the following,
“ATLAS” data are simulated ICESat-2 data based on MABEL data from 2012 (“M-ATLAS” data).

(Note that these data have not been range-corrected nor background-noise-corrected.)

Figure 14 shows that even for day-time data, which have a much higher noise level than night-time

data, most cloud layers that are visible in CPL data can be detected in M-ATLAS data using the
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density-dimension algorithm, although they are barely visible to the eye in the ATLAS data.

Layer Heights — Day — Density Dimension
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Figure 14. Detection of clouds over Greenland in ATLAS data using the Density-Dimension
Method. Top: CPL data. Middle: MABEL-based ATLAS day-time data. Bottom: Result of analysis with

density-dimension algorithm.

In Figure 15, the situation is worse, as higher noise obscures the clouds in the ATLAS data entirely
(middle panel), however, some of the clouds that are recorded in CPL data can still be identified
in the ATLAS data using the density-dimension algorithm. For these 2012 examples, density was

run once, using parameters as in the Table 2a (method version A).
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Figure 15. Detection of clouds over eastern Greenland in ATLAS data using the Density-
Dimension Method. Top: CPL data. Middle: MABEL-based ATLAS day-time data. Bottom: Result of analysis

with density-dimension algorithm.
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6 Analysis of 2013 M-ATLAS Data
Algorithm flow: Method B

Introductory Notes. Because MABEL atmosphere data collected in 2012 and 2013 MABEL-based
simulated ATLAS (M-ATLAS) data have different characteristics, some parts of the code have been
changed for the M-ATLAS data analysis. Essential steps of the algorithm are the same. Where
there is a branch in the methods, MethodA refers to code used for 2012 MABEL data analysis
and MethodB refers to code used for 2013M-ATLAS data analysis. Both versions and the range
of the parameters employed are useful for preparing data analysis of the ICESat-2 ATLAS data.
A sensitivity study further demonstrates dependencies on parameters and indicates flexibility of
the algorithm frame work for adjustments that may be needed post-launch. Lessons learned from
ICESat suggest that flexibility to adapt to changes in data characteristics may be a good preparation
for the ICESat-2 Mission.

6.1 Correction

Simulated data. The simulation uses MABEL photon counts, binned into bins matching the 400-
shot sums of expected ICESat-2 ATLAS data. Early M-ATLAS data are in essence MABEL 2012
data. 2013 M-ATLAS data are constructed to mimic NRB Profile data (see section 2 and section
3.1):

NRB = (raw_photon_count — background_noise) 1 (23)

where r is the range from the aircraft to the return height.
NRB is then normalized.

Corrections. The range correction causes the simulated NRB_Prof data to exhibit a vertical gra-

dient, as is apparent in the cloud free regions indicated in Figure 16. The range correction also has
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a multiplicative effect on the noise level, increasing with range. This effect is particularly severe,
because the height of the atmosphere data extends to the height of the observing aircraft above
the ground (it will be different - smaller - for satellite data). This effect however, complicates the

identification of atmospheric layers in the simulated M-ATLAS data.

/home/bwallin/ws/icesat?2_atmos/data/ATLAS_simulated_data_MABEL_20-23-25Sep13.v3.r2
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Figure 16. Example of noise gradients for cloud-free regions in background-subtracted range-
square corrected M-ATLAS data atlas-simulated-data-mabel-20-23-25sep13.v3.r2. Gradient
samples indicated in Boxes A and B.

This effect can be analyzed and corrected for as follows:

After averaging the values in areas A and B for each height bin (see Figure 17), the gradient, g,

follows a power curve

g x r0-6 (24)

and thus can be corrected for, while also reducing the noise amplification, by reversing part of the
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Figure 17. Example of noise gradients for cloud-free regions in background-subtracted range-
square corrected M-ATLAS data atlas-simulated-data-mabel-20-23-25sep13.v3.r2. Gradient
sample areas indicated in Fig. 16.

range square correction

(25)

This correction step is applied after loading data and before the analysis, using Method version
B, as summarized in Listing 28, with application of density calculation twice. The effect of the

correction can be seen in the following figure (18).
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Raw data: ATLAS_simulated_data_ MABEL_20-23-25Sep13.v3.r2
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Figure 18. Simulated data set after range-dependent correction. M-ATLAS data atlas-
simulated-data-mabel-20-23-25sep13.v3.r2
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Pseudocode for these steps is given here:

-
define compute_range_matrix(data, start_range):

# computes ranges from source for each element of data matrix
# arguments:

# data — input matrix of data

cell_height = 30

# shape returns the size of the matrix data

[number_of_rows, number_of_columns] = shape(data)

# zeros([n, m]) returns an n by m matrix filled with zeros
range_matrix = zeros([number_of_rows, number_of_columns])
for j in 0 to number_of_columns-1:
# r is None for flagged data at top
r = None
for i in 0 to number_of_rows-1:
# No data flag is —9999
if histo[number_of_columns-i, j] '= -9999:
if r is None:
r = max(0, start_range[j])
else:
r += cell_height/1000

range_matrix [number_of_columns-i, j] = r

return range_matrix

# start_range — range of top valid data point (provided with dataset)

Listing 32: Pseudo-Code: Range Calculation

-
define correct_power(data, start_range):

# computes ranges from source for each element of data matrix
# arguments:

# data — input matrix of data

# shape returns the size of the matrix data

[number_of_rows, number_of_columns] = shape(data)
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# compute range from source for each measurement

range_matrix = compute_range matrix(data, start_range)

# set elements less than 1 to 1 to avoid near range numerical artifacts
for i in 0 to number_of_rows-1:
for j in 0 to number_of_columns-1:
if range matrix[i, j] < 1:

range_matrix[i, j] == 1

# apply power correction
for i in 0 to number_of_rows-1:
for j in 0 to number_of_columns-1:

data = datali,j]/range_matrix[i,j]~(.6)

return data

Listing 33: Pseudo-Code: Range Calculation
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6.2 Application: Analysis of a Data Set with Three Different Types of Condi-

tions

To demonstrate the auto-adaptive capabilities of the density-dimension algorithm, a data set was
composed from three different flight segments, which are exemplary of different types of conditions,

noise characteristics and different types of atmospheric layers.

The first segment is MABEL-based simulated ATLAS data from September 20, 2013. It begins in
the late afternoon and continues into nighttime. This data segment contains boundary layer aerosol
in the first two thirds and multi-layer clouds in the last third or so of the data. The boundary
layer aerosol is confined below about 2-3 km and the clouds are at about 5, 8 and 12 km altitude.
The second segment, from September 23, is mainly clear, but does have a well-defined boundary
layer below about 2 km composed of aerosol. There are also some sporadic cumulus clouds at the
boundary layer top. The third segment is from a daytime MABEL flight on September 25, 2013
and contains many more clouds between 8 and 13 km altitude. In the analysis that follows, these
three segments are joined together to better represent the varying background and atmospheric

conditions that ATLAS will encounter.

The analysis uses algorithm flow for Method B and the following parameters (as given in Table 2b).

(The information below is included in Table 2b, but given here as well for clarity.)

Anisotropy factor in meters: a,, = 10 in density run 1, a,, = 20 in density run 2

stgma = 3 in density run 1, sigma = 6 in density run 2

cutoff =1 in in density runs 1 and 2

Kernel sizes: density run 1: ny =7 and r1, = 3; m; = 7 and 1, = 3; kernel (7,7)

density run 2: ny = 13 and o, = 6; mo = 25 and rp, = 12; kernel (13,25)

Window size for threshold determination (threshold_segment_length): 20 (in both runs)
Threshold-bias: 60.0 in density run 1, 0.0 in density run 2

Threshold sensitivity: 1 (in both runs)

Size of clusters in small-cluster removal step: 600 (in both runs)

Optional power correction for aircraft data used: range multiplied with 706 for » > 1, effectively

r14 instead of r2
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These parameters will be used as the default parameters in future analyses. Results are given in

Figure 19.

There are no CPL data available for the MABEL flights in 2013, hence a validation as for 2012

data cannot be performed.
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Raw data: ATLAS_simulated_data_ MABEL_20-23-25Sep13.v3.r2

150
125
n 100
g
o 75
E
= 1000
£ 50
S
2 2
]
-25
a B I ¢ e
1000000 2000000 000 4000000 5000000 6000000
alona track distance (meters)
0.0300
0.0275
Smoothing kernel (Ivl 0) expanded scale 00250
0.0225
e R e 0o
500 1000 1500 2000 00175
0.0150
00125
Density (vl 0)
150
125
& 100
]
T 75
E
29 50
]
< 25
0
! ! -25
C
1000000 2000000 3000000 4000000 500
alona track distance (maters)
Thresholds
350
300
3 20
2
g
£ 200
150
100
d 0 1000000 2000000 3000000 4000000 5000000 6000000 7000000
alona track distance (meters)
Thresholded density: ATLAS_simulated_data_ MABEL_20-23-25Sep13.v3.r2
20000 - - : - : : -
150
125
15000 -
P 100
2 B
T i il v i ®
£ 10000 w&“ M’ ‘W‘. S o
) o, o all 50
2 2 Wl
< 25
5000 |- -
s o
b “ - ik ‘ 5
e 0 | I L 1 | i |
o 1000000 2000000 3000000 4000000 5000000 6000000 7000000

alona track distance (meters)

Figure 19. Analysis of triple M-ATLAS data set ATLAS simulated_data_ M ABEL_20-23-
25Sep13.v3.r2 of night-time data and day-time data (based on MABEL atmosphere data
collected 20-23-25Sep2013). Data simulation with background and range-square correction.
Results of analysis using density-dimension algorithm, version B.

(a) Data after application of range-dependent correction

(b) Kernel used in density function in runl (radius1=3, nbhd=7 (r1,, = r1,y = 3), 0 = 3, am, = 10, cutoff=1)
(c) Density1

(d) Thresholds

(e) Cloud mask 1 (before small-cluster removal)
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Boundary layer and density: ATLAS_simulated_data_ MABEL_20-23-25Sep13.v3.r2
20000 - - : : - - - 1

150
125

15000 - 4

0
o
s

100

i »

10000 WM ‘<'W

height (meters)

5000|- PO 1
A - . . ,

0 | . s . | . |
f 0 1000000 2000000 3000000 4000000 5000000 6000000 7000000
alona track distance (meters)

0.0042

0.0039

0.0036

Smoothing kernel (Ivl 1) expanded scale 0.0033

M e —— T |
0 1000 2000 3000 4000 5000 6000 7000 8000 0.0027
0.0024

0.0021

0.0018

Density (Ivl 1)

20000

height (meters)

h 1000000 2000000 3000000 4000000 500000t 6000000 7000000
alona track distance (meters)

Thresholds

120

100

threshold

0 1000000 2000000 3000000 14000000 5000000 6000000 7000000
alona track distance (meters)

Thresholded density: ATLAS_simulated_data_ MABEL_20-23-25Sep13.v3.r2
20000 - - - - - - 1

15000 - 4

10000

height (meters)

50001,

0 . - n . L I L
‘] 0 1000000 2000000 3000000 4000000 5000000 6000000 7000000
alona track distance (meters)

Figure 19, ctd. Analysis of triple M-ATLAS data set ATLAS simulated_data MABEL_20-
23-25Sep13.v3.r2 of night-time data and day-time data (based on MABEL atmosphere data
collected 20-23-25Sep2013). Data simulation with background and range-square correction.
Results of analysis using density-dimension algorithm, version B.

f) Cloud mask 1 (after small-cluster removal)

h) Density?2
i

J

(
(g) Kernel used in density function in run2 (re . = 12, m=25, ro , = 6, n=13, o = 6, cutoff=1, am, = 20)
(
(i

Thresholds

Cloud mask 2 (before small-cluster removal). Shows that small-cluster removal is needed.

)
)
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Boundary layer and density: ATLAS_simulated_data_ MABEL_20-23-25Sep13.v3.r2
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Figure 19, ctd. Analysis of triple M-ATLAS data set ATLAS simulated_data M ABEL_20-
23-25Sep13.v3.r2 of night-time data and day-time data (based on MABEL atmosphere data
collected 20-23-25Sep2013). Data simulation with background and range-square correction.
Results of analysis using density-dimension algorithm, version B.

(k) Cloud mask 2 (after small-cluster removal)

(1) Combined cloud mask with data

(m) Combined cloud mask with density 1
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Figure 19, ctd. (o) Layer boundaries for example in Fig. 19.
Data set ATLAS simulated_data MABEL_20-23-25Sep13.v3.r2.
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7 Sensitivity Studies (for 2013 M-ATLAS Data)

The sensitivity studies are carried out to analyze and illustrate the effects of varying the parameters

and prepare for analysis of future ICESat-2 data that may have different characteristics.

7.1 Sensitivity Studies for Single-Density Runs

To demonstrate the effects of the primary parameters, experiments with single-density are given in
section (7.1) The following experiments are carried out: Experiment 1: Changing the neighborhood
(Figure 20),

experiment 2: changing o (Figure 21),

and experiment 3: changing anisotropy (for two different neighborhoods, Figure 22).
In detail, the following experiments are carried out:

Experiment 1: Changing the neighborhood r (Figure 20)
Fig. 20a: o =5, a,, = 10, r=2, kernel (5,5)

Fig. 20b: 0 =5, a,, = 10, r=3, kernel (7,7)

Fig. 20c: o0 =5, a,, = 10, r=4, kernel (9,9)
Fig. 20d: o0 =5, a,, = 10, r=5, kernel (11,11)
Fig. 20e: 0 =5, a,, = 10, r=6, kernel (13,13)
Fig. 20f: o =5, a,, = 10, r=7, kernel (15,15)
Fig. 20g: 0 =5, a,, = 10, r=8, kernel (17,17)
Fig. 20h: o =5, a,, = 10, r=10, kernel (21,21)

Experiment 2: Changing o (Figure 21)
Fig. 21a: r=5, kernel (11,11), a,, = 10, 0 = 1
Fig. 21b: r=5, kernel (11,11), a,, = 10, 0 = 2
Fig. 21c: r=5, kernel (11,11), a,, = 10, 0 = 3
Fig. 21d: r=5, kernel (11,11), a,, = 10, 0 = 4
Fig. 21e: r=5, kernel (11,11), a,, = 10, 0 =
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Fig. 21f: r=5, kernel (11,11), a,, = 10, 0 =8
Fig. 21g: r=5, kernel (11,11), a,, = 10, 0 = 16
Fig. 21h: r=5, kernel (11,11), a,, = 10, 0 = 140

Experiment 3: Changing anisotropy a,, (with r=5 and r=10) (Figure 22)

Fig. 22a: o =5, a,, = 3, r=5, kernel (11,11)

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

22b:
22c¢:
22d:
22e:

22f:

22g:
22h:

o =5, ay = 3, r=10, kernel (21,21)
o =05, an = 10, r=>5, kernel (11,11)
o =05, an = 10, r=10, kernel (21,21)
o =5, an = 20, r=>5, kernel (11,11)
o =5, an = 20, r=10, kernel (21,21)
o =05, an = 30, r=>5, kernel (11,11)
o =5, an = 30, r=10, kernel (21,21)

All experiments use the following parameters: cutoff=2 (i.e. 2 standard-deviations), minimal cluster

size not removed: 600,

For each experiment and sub experiment, the following resultant figure panels are given from top

to bottom:

(1) weight matrix (kernel),

(2) density,

(3) preliminary cloud mask after application of thresholds, with density values within cloud areas,

and (4) density in cloud areas, for final cloud mask after application of small-cluster removal.
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Figure 20.

data collected 20Sep13).

o=5

am = 10

(a) neighborhood = 2 (5x5 kernel)
(b) neighborhood = 3 (7x7 kernel)

Sensitivity Experiment 1:
Analysis of day-time data (dataset: ATLAS_simulated_data_MABEL_20Sep13.v3.r2, based on MABEL atmosphere
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Figure 20, ctd. Sensitivity Experiment 1: Changing neighborhood

Analysis of day-time data (dataset: ATLAS_simulated_data_MABEL_20Sep13.v3.r2, based on MABEL atmosphere

data collected 20Sep13).

o=5

am = 10

(c) neighborhood = 4 (9x9 kernel)
(d) neighborhood = 5 (11x11 kernel)
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Figure 20, ctd. Sensitivity Experiment 1: Changing neighborhood

Analysis of day-time data (dataset: ATLAS_simulated_data_MABEL_20Sep13.v3.r2, based on MABEL atmosphere
data collected 20Sep13).

o=35

am = 10

(e) neighborhood = 6 (13x13 kernel)

(f) neighborhood = 7 (15x15 kernel)
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Figure 20, ctd. Sensitivity Experiment 1: Changing Neighborhood

Analysis of day-time data (dataset: ATLAS_simulated_data_MABEL_20Sep13.v3.r2, based on MABEL atmosphere

data collected 20Sep13).
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Figure 21. Sensitivity Experiment 2: Changing o

Analysis of day-time data (dataset: ATLAS_simulated_data_MABEL_20Sep13.v3.r2, based on MABEL atmosphere
data collected 20Sep13).
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Figure 21, ctd. Sensitivity Experiment 2: Changing o

Analysis of day-time data (dataset: ATLAS_simulated_data_MABEL_20Sep13.v3.r2, based on MABEL atmosphere

data collected 20Sep13).
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Figure 21, ctd. Sensitivity Experiment 2: Changing o

Analysis of day-time data (dataset: ATLAS_simulated_data_MABEL_20Sep13.v3.r2, based on MABEL atmosphere
data collected 20Sep13).

neighborhood = 5

am = 10

(e) o =6

(f) o =
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Figure 21, ctd. Sensitivity Experiment 2: Changing o

Analysis of day-time data (dataset: ATLAS_simulated_data_MABEL_20Sep13.v3.r2, based on MABEL atmosphere
data collected 20Sep13).
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Figure 22. Sensitivity Experiment 3: Changing anisotropy (with neighborhood = 5 and 10)
Analysis of day-time data (dataset: ATLAS_simulated_data_MABEL_20Sep13.v3.r2, based on MABEL atmosphere
data collected 20Sepl3).

o=5

(a) am = 3, neighborhood = 5

(b) am = 3, neighborhood = 10
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Figure 22, ctd. Sensitivity Experiment 3: Changing anisotropy (with neighborhood = 5 and
10)

Analysis of day-time data (dataset: ATLAS_simulated_data_MABEL_20Sep13.v3.r2, based on MABEL atmosphere
data collected 20Sepl3).

o=5

(¢) am = 10, neighborhood = 5

(d) am = 10, neighborhood = 10
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Figure 22, ctd. Sensitivity Experiment 3: Changing anisotropy (with neighborhood = 5 and
10)

Analysis of day-time data (dataset: ATLAS_simulated_data_MABEL_20Sep13.v3.r2, based on MABEL atmosphere
data collected 20Sepl3).

o=5

(e) am = 20, neighborhood = 5

(f) am = 20, neighborhood = 10
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Figure 22, ctd. Sensitivity Experiment 3: Changing anisotropy (with neighborhood = 5 and
10)

Analysis of day-time data (dataset: ATLAS_simulated_data_MABEL_20Sep13.v3.r2, based on MABEL atmosphere
data collected 20Sepl3).

o=5

(g) am = 30, neighborhood = 5

(h) am = 30, neighborhood = 10

158



7.2 Sensitivity Studies for Double-Density Runs

The complete figure series for the double-density run is given in Figure 23;

parameters:

threshold_segment_length(=window) = 20, o = 3,6, a,,, = 10, 20, base_threshold = 70, 0, thresh-
old_sensitivity = 1, 1.

To illustrate the dependencies in the framework of “running density twice”, the following experi-

ments are undertaken; parameters listed are parameters changed for density run 2:

Experiment 1: Changing threshold window (Figure 24), (a) window=10, (b) window= 30
Experiment 2: Changing threshold sigma (Figure 25), (a) 0 =5, (b) 0 =7

Experiment 3: Changing anisotropy (Figure 26), (a) a,, = 10, (b) a,,, = 30

Experiment 4: Changing base threshold (Figure 27),

- (a) base_threshold = -3, (b) base_threshold = 3
Experiment 5: Changing threshold sensitivity (Figure 28),

- (a) threshold _sensitivity= 0.9, (b) threshold sensitivity= 1.1

Experiment 6: Changing minimum cluster size (Figure 29),

- (a) size_threshold= 100, (b) size_threshold= 500

For each experiment, the following figures are shown (in 6 panels, top to bottom:)

1) Kernel of density run 2,

2) density 2,

4) preliminary cloud mask, after threshold application to density 2,

(1)

(2)

(3) threshold of density run 2,

(4)

(5) cloud mask after small-cluster removal for density run 2,
(6)

6) combined, final cloud mask from density runs 1 and 2, with density-1 values shown.
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Figure 23. Complete Plot Series for Double Density Run

Analysis of day-time data (dataset: ATLAS simulated_data_MABEL_20-23-25Sep13.v3.r2, based on MABEL atmo-
sphere data collected 20-23-25Sep13).

window = 20

o= 3,6

am = 10, 20

base_threshold = 70, 0

threshold_sensitivity = 1, 1
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Figure 24. Double Density Sensitivity Experiment 1: Changing threshold window
Analysis of day-time data (dataset: ATLAS_simulated_data-MABEL_20-23-25Sep13.v3.r2, based on MABEL atmo-
sphere data collected 20-23-25Sep13).
o= 3,6
10, 20
base_threshold = 70, 0
threshold _sensitivity = 1, 1
(a) window = 10
(b) window = 30
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Figure 25. Double Density Sensitivity Experiment 2: Changing sigma
Analysis of day-time data (dataset: ATLAS_simulated_data-MABEL_20-23-25Sep13.v3.r2, based on MABEL atmo-
sphere data collected 20-23-25Sep13).
window = 20
10, 20
base_threshold = 70, 0
threshold _sensitivity = 1, 1
(a) o =5
b)o=7
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Figure 26. Double Density Sensitivity Experiment 3: Changing anisotropy

Analysis of day-time data (dataset: ATLAS_simulated_data-MABEL_20-23-25Sep13.v3.r2, based on MABEL atmo-
sphere data collected 20-23-25Sep13).

window = 20

oc=3,6

base_threshold = 70, 0

threshold _sensitivity = 1, 1

(a) anisotropy= 10

(b) anisotropy = 30
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Figure 27. Double Density Sensitivity Experiment 4: Changing Base Threshold

Analysis of day-time data (dataset: ATLAS_simulated_data-MABEL_20-23-25Sep13.v3.r2, based on MABEL atmo-
sphere data collected 20-23-25Sep13).

window = 20

oc=3,6

am = 10,20

threshold _sensitivity = 1, 1

(a) base_threshold = -3

(b) base_threshold = 3
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Figure 28. Double Density Sensitivity Experiment 5: Changing Threshold Sensitivity
Analysis of day-time data (dataset: ATLAS_simulated_data-MABEL_20-23-25Sep13.v3.r2, based on MABEL atmo-
sphere data collected 20-23-25Sep13).
window = 20
oc=3,6
10,20
base_threshold = 70,0
(a) threshold_sensitivity = .9
(b) threshold_sensitivity = 1.1
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Figure 29. Double Density Sensitivity Experiment 6: Changing Minimum Cluster Size

Analysis of day-time data (dataset: ATLAS_simulated_data-MABEL_20-23-25Sep13.v3.r2, based on MABEL atmo-

sphere data collected 20-23-25Sep13).
window = 20

oc=3,6

am = 10,20

base_threshold = 70,0
threshold_sensitivity = 1,1
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8 Analysis of GLAS-Data-Based Simulated ICESat-2 Data (2016

Version)

Following analysis of simulated ICESat-2 data based on MABEL data collected in 2013 and formal
review of algorithms and ATBD in February 2015, GLAS-data-based ICESat-2 data were simulated
and analyzed to further broaden our understanding of expected performance of the ATLAS instru-
ment and data return from the ICESat-2 Mission. To demonstrate the auto-adaptive capabilities of
the DDA and to provide a large example, a data set containing two full orbits was generated. Day-
night transition are obvious in the analyzed examples in the following figures. The first transition

from night-time data to day-time data occurs near 6000 km in along-track distance.

8.1 Simulation

The GLAS calibrated, attenuated backscatter (data product GLAQO7) are used as basis for the
ATLAS atmospheric simulation. With knowledge of the ATLAS instrument characteristics (see
Table 3), the GLAO7 data can be used directly to obtain the ATLAS photon counts (P(z)) through

application of the following equation:

Pe

P(Z) = ﬁB(Z)TQ(Z)AZAthTOptNa

Where:

r - The range from the satellite to the height z (in m)

B(z) - the calibrated attenuated backscatter cross section at height z (m~'sr—1)
Az - the bin size in meters (30 m)

A, - Area of telescope (m, effective)

T(z) - Atmospheric transmission from top of atmosphere to height z

Q. - Quantum efficiency of detector

Topt - Transmission of the receiver system optics

N, - Number of shots summed (nominally 400)
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And P, is the number of photons transmitted by ATLAS which is defined by the laser energy (F)

as:

_EX

P =—
he

Where A is the laser wavelength (532 nm), h the Planck constant and c¢ the speed of light. The
product of 5(z) and T'(z) is essentially the GLAS calibrated attenuated backscatter from the GLA07
product. The GLAS background, which is stored on the GLAQO7 product in units of photon counts
per bin, is scaled to an equivalent ATLAS background by again using knowledge of the ATLAS
instrument parameters. This is simply a scaling factor that is computed from the ratio of instrument
parameters that govern background magnitude (ATLAS/GLAS). This ratio has a value of 0.1 per
shot. However, GLAS used a 40 Hz laser, while ATLAS will have a 10 KHz laser. Thus, for a given
unit of time, ATLAS will collect 25 times more background photons than GLAS (10,000/40 - 0.1).
ATLAS detector dark counts are also added to the background (10 KHz).

Since the GLAS atmospheric profile spans the vertical range of -1 to 40 km, the folding effect that
ATLAS will experience (due to the 10 KHz laser) can be simulated. ATLAS simulated data based
on the GLAS data from the 15 to 30 km range and the 30 to 45 km range is added to the ATLAS
simulated data from the lowest 15 km. This is done bin by bin as the scattering at any height z
(where Z < 15 km) is equal to the sum of the scattering at height Z, Z + 15 km, Z + 30 km, etc.
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ATLAS Instrument Parameter

Current (pre-lab measured) Value

Laser Repetition Rate 10 KHz
Laser Energy 120 p J
Telescope Effective Area 0.43 m?
Telescope FOV 83 ur
Detector Quantum Efficiency 0.15
Detector Dead Time 3 ns
Detector Dark Count Rate 10 KHz
Bandpass Filter Width 30 pm
Nominal Receiver Optics Throughput 0.30
Nominal Orbit Height 495 km
Laser/Telescope FOV Spot Size (on ground) 14m/ 41 m

Table 3 Pertinent ATLAS instrument parameters and their values at present.
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8.2 Analysis

The analysis of the GLAS-based simulated ICESat-2 data is carried out by application of the DDA
using code version v105, which includes the method A/B synthesis. As can be seen in Figure 30,
application of the DDA with the parameters that worked best for analysis of M-ATLAS data (as
presented in section 6.2) does not yield especially good results for the GLAS-based ICESat-2 data.
This is as expected, because the two types of simulated data have different statistical properties.
Notably, using the parameter combinations and exactly the same algorithm that worked for analysis
of M-ATLAS data (method version B and a double-density run), the algorithm picks up many false
positives in the lower density ranges. This effect may be attributed to the fact that MABEL-based
simulated data have weaker signals and more background noise than GLAS-based simulated data.
As an aside, this example illustrates nicely that we learn new things from each experiment and
that the algorithm needs to be adjustable to different instrument characteristics and observation

characteristics, as these may also change during the operational part of the mission.
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Figure 30. Analysis of GLAS—data based simulated ICESat-2 data using parameters that
worked best for MABEL-based simulated ICESat-2 data (M-ATLAS data) and method version
B in the method A/B code (v105). Double-density run (t3). Segment 1 of 2-orbit data set.
o= 3,6 cutoff = 1,1

10,20 min cluster size = 600,600
base_threshold = 60E+13,0 downsampling = 1,1
threshold_sensitivity = 1,1 172 threshold_segment_length = 2,2
quantile = 0.9,0.9




For GLAS-based simulated ICESat-2 data, an analysis with the following parameters works best
(see Figure 31 (t8)):

c=3 cutoff = 1
am = 10 min cluster size = 600
base_threshold = 60E+13 downsampling = 1
threshold_sensitivity = 0.9 threshold_segment_length = 2

quantile = 0.75

Table 4. Parameters for single-density analysis of GLAS-data-based simulated ICESat-2 data (t8)

The analysis is carried out for two orbits of GLAS-based simulated ICESat-2 data. The results
indicate, among other things, that the algorithm adapts well across boundaries between day-time

and night-time data.

Only one density run was needed for this analysis. The parameter combinations for (t8) were
determined in a sequence of 15 test runs with different parameter combinations. Then a sensitivity

study was carried out, varying each parameter around the values used in (t8), described in section

(4.9).

Corrections and NRB data. The range-dependent correction described in section (6.1) does not need
to be applied, because these data sets are based on satellite data. note that the data have a factor

of E+13.

Notes: Kernel size determined using the ceiling function for rounding (as in previous code versions

and analyses), according to
m =2 - ceil(om/Tres - cutoff- am) + 1
n =2 ceil(om/Yres - cutoff) + 1

where m and n are the kernel dimensions and o, = 300y;, = 300 and a,, is the anisotropy factor

in meters. Bins are 30 by 280 meters, i.e. ;s = 280 and y,.s = 30.

Results are shown in Fig. 31. For visualization purposes, the 2 orbits of data, which are ~ 276000
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profiles in total, are split into 10 segments of equal size (= 27600 each). Analysis uses code v105.
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Figure 31-1. Analysis of GLAS—data based simulated ICESat-2 data using the DDA (method
A /B, code v105, “best” parameter combination (t8), single-density run). Segment 1 of 2-orbit
data set. (a) Raw data, (b) Kernel, (c¢) Density, (d) Adaptive threshold, (e) Density after
threshold is applied and (f) Final density mask after (after small clusters are removed).

oc=3 cutoff =1
am = 10 min cluster size = 600
base_threshold = 60E+13 downsampling = 1
threshold_sensitivity = 0.9 threshold_segment_length = 2
quantile = 0.75
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Figure 31-2. Analysis of GLAS—data based simulated ICESat-2 data using the DDA (method
A /B, code v105, “best” parameter combination (t8), single-density run). Segment 2 of 2-orbit
data set. (a) Raw data, (b) Kernel, (c) Density, (d) Adaptive threshold, (e) Density after
threshold is applied and (f) Final density mask after (after small clusters are removed).

oc=3 cutoff = 1
am = 10 min cluster size = 600
base_threshold = 60E+13 downsampling = 1

threshold_sensitivity = 0.9 threshold_segment_length = 2
quantile = 0.75

176



Raw data: glas_nrb_profiles_seg_3.txt 1e16

20000
5
4
_ 3
H 2
H 1
Z 4
2 -1
-2
-3
(2) -
1000000 2000000 3000000 4000000 5000000 6000000 7000000
alona track distance (meters)
0.024
0022
kernel (vl 0) expanded scale 0020
8o 0018
0 500 1000 1500 0014
0012
0010

(b)

20000 Density (vl 0) 16
5
4
15000
3
B 2
£ 10000 1
Z 0
5000 -
-2
-3
(c) 0 e U N
1000000 2000000 3000000 4000000 5000000 6000000 7000000
alona track distance (meters)
1015
z
g
£
( ) 1000000 2000000 3000000 4000000 5000000 6000000
alona track distance (meters)
20000 Thresholded density: glas_nrb_profiles_seg_3.txt 16
5
4
15000
3
3 2
2 10000 1
Z 0
5000 y -
A y -2
e o s J M et -3
() : o >
0 1000000 2000000 3000000 4000000 5000000 6000000 7000000
alona track distance (meters)
20000 Final mask: glas_nrb_profiles_seg_3.txt 1e16
5
15000 4
_ 3
b 2
2 10000 1
i 4
g
5000 B
‘. i 2
[ ) I -3
e il
(f ) ol & ! -4
1000000 2000000 3000000 4000000 5000000 6000000 7000000

alona track distance (meters)

Figure 31-3. Analysis of GLAS—data based simulated ICESat-2 data using the DDA (method
A /B, code v105, “best” parameter combination (t8), single-density run). Segment 3 of 2-orbit
data set. (a) Raw data, (b) Kernel, (c) Density, (d) Adaptive threshold, (e) Density after
threshold is applied and (f) Final density mask after (after small clusters are removed).

oc=3 cutoff =1
am = 10 min cluster size = 600
base_threshold = 60E+13 downsampling = 1
threshold_sensitivity = 0.9 threshold_segment_length = 2
quantile = 0.75
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Figure 31-4. Analysis of GLAS—data based simulated ICESat-2 data using the DDA (method
A /B, code v105, “best” parameter combination (t8), single-density run). Segment 4 of 2-orbit
data set. (a) Raw data, (b) Kernel, (c) Density, (d) Adaptive threshold, (e) Density after
threshold is applied and (f) Final density mask after (after small clusters are removed).

oc=3 cutoff =1
am = 10 min cluster size = 600
base_threshold = 60E+13 downsampling = 1
threshold_sensitivity = 0.9 threshold_segment_length = 2
quantile = 0.75
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Figure 31-5. Analysis of GLAS—data based simulated ICESat-2 data using the DDA (method
A /B, code v105, “best” parameter combination (t8), single-density run). Segment 5 of 2-orbit
data set. (a) Raw data, (b) Kernel, (c) Density, (d) Adaptive threshold, (e) Density after
threshold is applied and (f) Final density mask after (after small clusters are removed).

oc=3 cutoff =1
am = 10 min cluster size = 600
base_threshold = 60E+13 downsampling = 1
threshold_sensitivity = 0.9 threshold_segment_length = 2
quantile = 0.75
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Figure 31-6. Analysis of GLAS—data based simulated ICESat-2 data using the DDA (method
A /B, code v105, “best” parameter combination (t8), single-density run). Segment 6 of 2-orbit
data set. (a) Raw data, (b) Kernel, (c) Density, (d) Adaptive threshold, (e) Density after
threshold is applied and (f) Final density mask after (after small clusters are removed).

oc=3 cutoff =1
am = 10 min cluster size = 600
base_threshold = 60E+13 downsampling = 1
threshold_sensitivity = 0.9 threshold_segment_length = 2
quantile = 0.75
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Figure 31-7. Analysis of GLAS—data based simulated ICESat-2 data using the DDA (method
A /B, code v105, “best” parameter combination (t8), single-density run). Segment 7 of 2-orbit
data set. (a) Raw data, (b) Kernel, (c) Density, (d) Adaptive threshold, (e) Density after
threshold is applied and (f) Final density mask after (after small clusters are removed).

oc=3 cutoff = 1
am = 10 min cluster size = 600
base_threshold = 60E+13 downsampling = 1

threshold_sensitivity = 0.9 threshold_segment_length = 2
quantile = 0.75
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Figure 31-8. Analysis of GLAS—data based simulated ICESat-2 data using the DDA (method
A /B, code v105, “best” parameter combination (t8), single-density run). Segment 8 of 2-orbit
data set. (a) Raw data, (b) Kernel, (c) Density, (d) Adaptive threshold, (e) Density after
threshold is applied and (f) Final density mask after (after small clusters are removed).

oc=3 cutoff =1
am = 10 min cluster size = 600
base_threshold = 60E+13 downsampling = 1
threshold_sensitivity = 0.9 threshold_segment_length = 2
quantile = 0.75
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Figure 31-9. Analysis of GLAS—data based simulated ICESat-2 data using the DDA (method
A /B, code v105, “best” parameter combination (t8), single-density run). Segment 9 of 2-orbit
data set. (a) Raw data, (b) Kernel, (c) Density, (d) Adaptive threshold, (e) Density after
threshold is applied and (f) Final density mask after (after small clusters are removed).

oc=3 cutoff =1
am = 10 min cluster size = 600
base_threshold = 60E+13 downsampling = 1
threshold_sensitivity = 0.9 threshold_segment_length = 2
quantile = 0.75
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Figure 31-10. Analysis of GLAS—data based simulated ICESat-2 data using the DDA (method
A /B, code v105, “best” parameter combination (t8), single-density run). Segment 10 of 2-
orbit data set. (a) Raw data, (b) Kernel, (c) Density, (d) Adaptive threshold, (e) Density
after threshold is applied and (f) Final density mask after (after small clusters are removed).

oc=3 cutoff =1
am = 10 min cluster size = 600
base_threshold = 60E+13 downsampling = 1
threshold_sensitivity = 0.9 threshold_segment_length = 2
quantile = 0.75
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8.3 Validation

To evaluate the performance of the DDA for analysis of GLAS-data-based simulated ICESat-2
data (2016 version), a movie was created that runs through the entire two-orbit data set. The top
running panel shows the simulated ICESat-2 data, from which the atmospheric layer boundaries
were determined. The bottom running panel shows the original GLAS data, with the layer bound-
aries superimposed (in yellow). The movie can be downloaded from the ICESat-2 SDT website.
To keep this document self-contained, segments of the movie are shown in Figures 34 and 35. To
aid in visual interpretation of the results, the height of 15km is indicated by a white line. Data
will only be recorded to 13.75 km above ground (as represented by on-board DEM) and 0.25 km
below ground. Hence clouds in the upper 1.25 km below the white line cannot be detected by the

algorithm.

The white line at 15 km illustrates the the height range of the folding effect that is described in the
section on data simulation: Since the GLAS atmospheric profile spans the vertical range of -1 to
40 km, the folding effect that ATLAS will experience (due to the 10 KHz laser) can be simulated.
ATLAS simulated data based on the GLAS data from the 15 to 30 km range and the 30 to 45 km
range is added to the ATLAS simulated data from the lowest 15 km. This is done bin by bin as
the scattering at any height z (where Z < 15 km) is equal to the sum of the scattering at height Z,
Z + 15 km, Z + 30 km, etc. As a result, layers that are folded over from above 15km can be seen
in some regions. They cannot be statistically distinguished from layers that exist below 15 km. An

example of the folding effect is seen in panel (5) of Fig. 32.
Numbers in the figures refer to latitude and sun elevation angle.

The movie (Fig. 34-35) shows the results of application of the DDA with parameters from run
(t8). The results indicate that the algorithm functions well across boundaries of day-time and
night-time observations and adapts to changes in ASR. Tenuous layers are detected most of the
time. Performance during night time is excellent. For day-time data, cloud layers are detected in
many cases, while missed in some other cases. Layers were also missed in GLASA data in some
instances. This version of the code includes ground, where detected, in the layers. The exemplary
segments that are enlarged in Figure 35 illustrate the detection capability of the DDA especially

during day-time.
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Figure 32. Evaluation of DDA analysis of GLAS-based simulated ICESat-2 data, 2 orbits.
Results for run (t8). Top panels show simulated ICESat-2 data, as used for layer identification with the DDA,
13.25 km to -0.25 km relative to the DEM. Bottom panels show GLAS data to a height of 20 km above Earth surface,
with a line at 15 km, and, superimposed as yellow lines, layer boundaries as identified in DDA analysis of simulated
ICESat-2 data. GLAS data was not available during analysis.
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Figure 32, ctd. Evaluation of DDA analysis of GLAS-based simulated ICESat-2 data, 2 orbits.
Results for run (t8). Top panels show simulated ICESat-2 data, as used for layer identification with the DDA,
13.25 km to -0.25 km relative to the DEM. Bottom panels show GLAS data to a height of 20 km above Earth surface,
with a line at 15 km, and, superimposed as yellow lines, layer boundaries as identified in DDA analysis of simulated
ICESat-2 data. GLAS data was not available during analysis. [Note this version of the figure does not include the

trailing end of the movie].
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Figure 33. Exemplary segments of the m?\gge in Figure 34 enlarged to show details. (a)
Night-time data, start of profile (part of segment 1). (b), (¢) Day-time data.



9 Sensitivity Studies for GLAS-Data-Based Simulated ICESat-2
Data (2016 Version)

Starting from the parameter combinations used in t8 and deemed best, a sensitivity study was
carried out systematically, varying each parameter to above and below the parameter combination
of t8 (which still remained best). Quality assessment (what is best?) is carried out by creation
of a movie that shows layer boundaries from the DDA superimposed on the original GLAS data.
The movie can be accessed under [url]. Here, an illustration of the effect of changing parameters
in the sensitivity study is presented in Figure 34, which shows the analysis results for a segment

with night-day transitions near near 6000 km.
Note auto-adaptive capability of the algorithm at the night-time day-time transition

All examples were run with code version v105. The sensitivity study includes single-density and

double-density runs, and parameter combinations that correspond to method A and method B.
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Figure 34-1. Sensitivity study to illustrate effects of parameter changes in method A /B, code
version v105, applied to GLAS-based simulated ICESat-2 data. Segment 1 of the 2-orbit data
set. min_cluster_size = 300 (t21), other parameters as in (t8).

o=3 cutoff = 1
am = 10 min cluster size = 300
base_threshold = 60E+13 downsampling = 1
threshold_sensitivity = 0.9 threshold_segment_length = 2
quantile = 0.75 method-B type
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Figure 34-2. Sensitivity study to illustrate effects of parameter changes in method A /B, code
version v105, applied to GLAS-based simulated ICESat-2 data. Segment 1 of the 2-orbit data
set. cutoff = 2 (t22), other parameters as in (t8).

oc=3 cutoff = 2
am = 10 min cluster size = 600
base_threshold = 60E+13 downsampling = 1
threshold_sensitivity = 0.9 threshold_segment_length = 2
quantile = 0.75 method-B type
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Figure 34-3. Sensitivity study to illustrate effects of parameter changes in method A /B, code
version v105, applied to GLAS-based simulated ICESat-2 data. Segment 1 of the 2-orbit data
set. threshold_sensitivity = 1 (t23) , other parameters as in (t8).

o=3 cutoff = 1
am = 10 min cluster size = 600
base_threshold = 60E+13 downsampling = 1
threshold_sensitivity = 1 threshold_segment_length = 2
quantile = 0.75 method-B type
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Figure 34-4. Sensitivity study to illustrate effects of parameter changes in method A /B, code
version v105, applied to GLAS-based simulated ICESat-2 data. Segment 1 of the 2-orbit data
set. threshold_sensitivity = 0.8 (t24), other parameters as in (t8).

o=3 cutoff = 1
am = 10 min cluster size = 600
base_threshold = 60E+13 downsampling = 1
threshold_sensitivity = 0.8 threshold_segment_length = 2
quantile = 0.75 method-B type

193



(2)

(b)

(©)

(d)

()

()

Figure 34-5.

height (meters)

height (meters)

Raw data: glas_nrb_profiles_seg_1.txt

1000000

0

500 1000 1500 2000 2500

2000000 3000000 4000000 5000000

alona track distance (meters)

6000000 7000000

kernel (vl 0) expanded scale

Density (Ivl 0)

1000000

2000000 3000000 4000000 500000

alona track distance (meters)

6000000

7000000

5|
4
z
g4
£
2
1
[ 1000000 2000000 3000000 4000000 5000000 6000000 7000000
alona track distance (meters)
20000 Thresholded density: glas_nrb_profiles_seg_1.txt
15000
z
2 mncnif,A 0
z Wy W
5 i "&{‘: .
5000 ﬁﬂ | i
A e ety
iy f . n‘. AN,
o Mo ! Ao et N i
[ 1000000 2000000 3000000 4000000 5000000 6000000 7000000
alona track distance (meters)
20000 Final mask: glas_nrb_profiles_seg_1.txt
15000
2
2 10000 f
S d ﬁ it
5000 Il s
i e \
T ! [ — i,.,urw\wp
o i LTIl Ry Y "
1000000 2000000 3000000 4000000 5000000 6000000 7000000

alona track distance (meters)

Sensitivity study to illustrate effects of parameter changes in method A/B,

code version v105, applied to GLAS-based simulated ICESat-2 data. Segment 1 of the 2-orbit
data set. downsampling = 5, threshold_segment_length = 0 and quantile = 0.5 (t25), other

parameters as in (t8).
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method-B type
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Figure 34-6. Sensitivity study to illustrate effects of parameter changes in method A /B, code
version v105, applied to GLAS-based simulated ICESat-2 data. Segment 1 of the 2-orbit data
set. Double density, downsampling = 5, threshold_segment_length = 0 and quantile = 0.5
(t26), other parameters as in (t8).

o= 3,6 cutoff = 1,1
am = 10,20 1 min cluster size = 600,600
base_threshold = 60E+13,0 95 downsampling = 5,5
threshold _sensitivity = 1,1 threshold_segment_length = 0,0

quantile = 0.5,0.5 method-A type
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Figure 34-7. Sensitivity study to illustrate effects of parameter changes in method A /B, code
version v105, applied to GLAS-based simulated ICESat-2 data. Segment 1 of the 2-orbit data
set. sigma = 6 (t28), other parameters as in (t8).

oc=6 cutoff = 1
am = 10 min cluster size = 600
base_threshold = 60E+13 downsampling = 1
threshold_sensitivity = 0.9 threshold_segment_length = 2
quantile = 0.75 method-B type
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Figure 34-8. Sensitivity study to illustrate effects of parameter changes in method A /B, code
version v105, applied to GLAS-based simulated ICESat-2 data. Segment 1 of the 2-orbit data
set. a, = 20 (t12), other parameters as in (t8).

o=3 cutoff = 1
am = 20 min cluster size = 600
base_threshold = 60E+13 downsampling = 1
threshold_sensitivity = 0.9 threshold_segment_length = 2
quantile = 0.75 method-B type
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Figure 34-9. Sensitivity study to illustrate effects of parameter changes in method A /B, code
version v105, applied to GLAS-based simulated ICESat-2 data. Segment 1 of the 2-orbit data
set. g = 0.5 (t6), other parameters as in (t8).

c=3 cutoff = 1
am = 10 min cluster size = 600
base_threshold = 60E+13 downsampling = 1
threshold_sensitivity = 0.9 threshold_segment_length = 2
quantile = 0.5 method-B type
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Sensitivity study to illustrate effects of parameter changes in method A/B,

code version v105, applied to GLAS-based simulated ICESat-2 data. Segment 1 of the 2-orbit
data set. q = 0.9 (t31), other parameters as in (t8).

o=3

am = 10

base_threshold = 60E+13
threshold_sensitivity = 0.9
quantile = 0.9

cutoff = 1

min cluster size = 600
downsampling = 1
threshold_segment_length = 2
method-B type
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10 Sensitivity Studies for Analysis of 2017-Oct Version of GLAS-
based Simulated ATL04 Data

10.1 Summary, Motivation and Data Sets

Summary. In this section, differences in the characteristics of “GLAS-data-based simulated ICESat-
2 data (ATLO04) of Oct-2017” data compared to “GLAS-data-based simulated ICESat-2 data (2016
version)” are described. A new sensitivity study is carried out to determine a set of algorithm-
specific parameters for auto-adaptive analysis of ATL04 data (with Oct 2017 characteristics.).
An important result is that the DDA-algorithm option “running density twice” is required to
ascertain correct detection of different types of atmospheric layers during day-time and night-time
conditions. As the application of the newly-developed Q/A measure “half-gap confidence flag” (see
section (11) Quality Assessment) shows, the layer detection using the double-density runs with the
parameter sets (t56) [and (t64)] yields throughout high confidences (mostly 0.8) and somewhat
lower confidences where appropriate. — Why two parameter sets at this point? See Section (12) on

Testing.

Necessity. Algorithm refinement for the upstream data products, ATL02 and ATL04, and code
development and implementation for those products resulted in different characteristics of the NRB
values in ATLO04, compared to those of the 2016 state-of-the-art simulated GLAS-based ICESat-2
type data. Especially, the energy value in the NRB calculation changed, resulting in NRB values
that are almost an order of magnitude larger. The NRB calculation now also includes an ad-
hoc identification of optically thick clouds, masking of those clouds and subtraction of everything
outside of this mask as “background” (see Partl of this ATBD). Since this pseudo-background de
facto includes thin clouds and aerosols, NRB values can be negative. Because of the division by

range-squared, the values can be negative on the order of -1E27.

If we disregard the change of data characteristics and apply the DDA in a single-density run using
parameter combination (t8), which was determined best for the 2016 GLAS-data-based simulated
ICESat-2 data, we find (see Figure 34-1) that
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(a) tenuous cloud layers and aerosol layers are still detected [good]

(b) false positives occur (areas identified as clouds that are likely not clouds) [bad].

These facts require a fresh determination of the set of algorithm-specific parameters. As before,
parameters are changed and a new sensitivity study is carried out. Notably, changes in energy
levels may also happen after launch, hence it is important to understand the algorithm sensitivity

to changes in data characteristics.

In addition, the task of developing confidence measure for atmospheric layer detection as part of
quality assessment (Q/A) requires a well-functioning layer detection algorithm, which includes a

set of algorithm specific parameters that is matched to the data characteristics.

Data set. In the sensitivity studies, we use a relatively short synthetic data set of 7143 profiles,
which includes several sections selected from a 70000 profile data set to include different types
of clouds (morphologically complex tenuous cloud, optically thick cloud, aerosol layer) and data
from night times and day times. The advantage of using a short data set in sensitivity studies is
that visual inspection is possible. Different data situations need to be included to ascertain layer
detection with auto-adaptive capabilities. For this study, ICESat-2 type data were simulated based
on GLAS data, using the process described in section (9). Data were passed through the SIPS
coded processing chain, and the resultant NRB data from product ATL04 are used here. These
data are referred to as “GLAS-based simulated ATL04 data (2017-Oct version)”. These data are
also used in testing of the SIPS code implementation, in comparison of CU code and SIPS code,
and in Q/A development. These data constitute the last pre-launch data utilized in algorithm

development.

10.2 Single-Density Runs Versus Double-Density Runs

The analysis of the 2016 state-of-the-art GLAS-based simulated data performed well using single-
density runs with parameter combination (t8). Some of the previously analyzed data sets required
double-density runs (running density twice, see section (3.10)), for instance, early GLAS-based

simulated data and 2013 M-ATLAS Data (section (8)). In this section, we perform sensitivity
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studies for single-density runs and double-density runs, to analyze the trade-off between the two

options for the ATL04 GLAS-based data sets. To recall, the trade-off is as follows:

(a)
(b)

()

Single-density runs require less computer time.

The algorithm is computationally inexpensive (mostly linear algebra), hence fast. Therefore

double-density runs can be afforded computationally.

A double-density run allows to detect clouds layers of very different spatial characteristics -
optically thick, but possibly spatially thin (but not necessarily spatially thin) cloud layers in
runs 1. In the second run, the thick cloud layers are ignored and a larger kernel is used to
facilitate aggregation of photon counts (or NRB values) over a larger region, which brings out

tenuous cloud and atmospheric layers.

10.3 Results and Consequences for Algorithm Applications: Running Density

Twice, thH6, t64

In summary, the results of the sensitivity studies are as follows (see also section 3.6 on layer

boundaries):

(1)

The parameter combination, ¢8, which worked best for the 2016 state-of-the-art simulated
GLAS-based ICESat-2 type data, renders ill-defined layer-tops and bottoms especially at day
time (right part of the data set). Some false positives appear, especially around the layer
boundaries. This indicates that the parameters that determine the threshold function do not
match the characteristics of the data any more. The change in NRB value determination

(ATLO04) requires a new set of parameters.

The parameter combination, t54, is the best result for a single-density run, as determined
in the sensitivity study. The layer boundaries are much better defined than in the ¢8 run.
However, the layer boundaries are still somewhat ragged for night-time data and sub-optimally
defined for day-time data. As the sensitivity study shows, it is not possible to retain tenuous

clouds, while suppressing false positives, using a single-density run.

This necessitates using a double-density run, which allows to identify optically thick layers in

the first run (using a smaller kernel and a very strict threshold function) and, in the second
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density run, identify the tenuous clouds, atmospheric layers and most clouds during day-time
conditions (using a larger kernel and a less strict threshold function). Notice that tenuous
clouds (on the left) are now connected in the vertical direction, except for likely natural gaps,
rain (7) falls out of the layer at a possible inversion (aerosols with clouds at the inversion
height), but no false positives remain and the layer tops during day-time are smooth. Single
clouds are retained during day-time conditions. t56 is the parameter combination used in
most experiments in October/November 2017 (and deemed best for current state-of-the-art

data characteristics in ATL04).

(4) Varying parameters around those of t56 and trouble-shooting remaining differences between
CU code and SIPS code, we noticed that a smaller cluster size in runl (200 rather than 300
pixels) retains all good characteristics of t56 and appears to slightly improve them. The cluster
size of 200 also renders the algorithm more robust (in the sense that all small speckles are
already filtered out and first-order cloud layers are more continuous). This is t64. Parameters
are otherwise the same as in t56. Note this may be good to know in testing, going forward,
as the CU declustering step and the SIPS declustering step employ similar, but not the exact

same function.

In consequence, double-density runs will be used going forward for analysis of ICESat-2 simulated

data and ATLAS atmosphere data after launch.
The ATLO09 data product will include the density fields from run 1 and from run 2 (see Table 2d).

Details regarding interpretation of the individual sensitivity experiments are given after the figures.
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10.4 Sensitivity Studies for Single-Density Runs

The following table shows the parameter combinations that were used for single-density runs:

Parameter | Sigma | Anisotropy | Cutoff | Down- | Minimum| Threshold| Threshold| Threshold| Quantile
Name sample | Cluster Bias Factor Window
Size

t8%* 3 10 1 1 600 6E+14 0.9 2 0.75
t32% 3 10 1 1 600 12E+14 0.9 2 0.75
t33* 3 10 1 1 600 10E+14 0.9 2 0.75
£34* 3 10 1 1 600 10E+14 0.9 3 0.75
t35 3 10 1 1 600 6E+14 0.9 3 0.75
t36* 3 10 1 1 600 10E+14 0.9 4 0.75
t37 3 10 1 1 600 6E+14 0.9 4 0.75
t38* 3 10 1 1 600 10E+14 1 2 0.75
t39 3 10 1 1 600 6E+14 1 2 0.75
t40 3 10 1 1 600 6E+14 1 2 0.9
t41 3 10 1 1 600 6E+14 1 2 0.85
t42 3 10 1 1 600 6E+14 0.9 2 0.9
t43 3 10 1 1 600 6E+14 0.9 2 0.85
t44%* 3 10 1 1 600 10E+14 1 2 0.9
t45% 3 10 1 1 600 10E+14 1 2 0.85
t46* 3 10 1 1 600 10E+14 0.9 2 0.9
t47* 3 10 1 1 600 10E+14 0.9 2 0.85
t53* 3 10 1 1 600 10E+14 0.9 2 0.75
t54* 3 10 1 1 600 10E+14 0.9 2 0.8

Table 5: Single Density Runs. *Denotes an experiment for which results are shown in Figure 35.
(t8) Best parameter combination for analysis of 2016 state-of-the-art GLAS-based simulated ICESat-2 data.
(t54) Best parameter combination for a single density run for analysis of 2017-Oct GLAS-based ATL04 data.

For each run, the following plots are shown:

(a) Raw NRB Data - Valid Bins
(b) Kernel Matrix

(c) Density - Valid Bins

(d) Thresholds Along Track

(e) Density - Thresholded

(f) Density - Declustered
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(2)

Final Cloud Mask

The final mask in figure panel (g) is derived from the mask shown in panel (f) by application of

the algorithm for cloud layers (3-bin rules and inclusion of loner bins).

Explanations of results in Figure 35

(1)

Starting from (t8). As noted in the summary above, the parameter combination ¢8 renders
ill-defined layer-tops and bottoms especially at day time (right part of the data set). Some
false positives appear, especially around the layer boundaries. False positives are not limited

to day-time conditions.

Fixing the threshold offset. (t32) with 7' = 12F 4 14 and (t33) with 7' = 10E + 14. The
first thing to match is the base threshold, or threshold offset, T, to the new types of NRB

data. The value used in (t32) works better and is kept for future runs.

Investigate the role of the segment length. (t34) with L = 3t, (t36) with L = 4 and (t53)
with L = 20. Here we look into the question: can the raggedy tops of layers, especially of
optically thick layers, be smoothed by increasing the segment length? Note this is used in the
determination of thresholds - same threshold function per segment, and the total length is
2L+ 1. (T8) uses L = 2, hence total length 5. Results for (t34) show that the raggedy edges
remain but get a little wider, and even wider for (t36). The effect of the larger segment length
on the threshold function is obvious for (t53), but the false positives do not disappear. This
indicates that the raggedy edges and false positives cannot be smoothed out using threshold
segment length. The visually ragged spots are much larger (wider) than the segment length.
Keep L = 2.

Do we really need the threshold-sensitivity factor in the threshold function? (t38) with
t =1, also (t44) , (t45), (t46), (t47), (t53) and (t54). It turns out that it is much harder
to achieve a well-working threshold function without using a threshold-sensitivity factor.
Experiment (t38) shows this. Other combinations of threshold function parameters were also

tried, as documented in Table 5. use t = 0.9.

Setting quantile. (t44) , (t45), (t46), (t47), (t53) and (t54). Quantile 0.75, 0.8, 0.85, 0.9.
Selected @ = 0.8. (t44) with ¢ = 0.9 - quantile too high, ¢ = 1 too high, clouds are missed.
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(t45) with ¢ = 0.85 - quantile too high, ¢ = 1 too high, clouds are missed.

(t46) with ¢ = 0.9 - quantile too high, ¢ = 0.9, more clouds, but too many tenuous clouds are
still missed. No rain falls out of the clouds.

(t47) with ¢ = 0.85 - quantile too high, ¢ = 0.9, more clouds, but too many tenuous clouds
are still missed.

(t54) with ¢ = 0.8 - best.

(6) (t54) is the best parameter combination for a single-density run. But it does not meet the
two requirements (no false positives, no raggedy edges), but retain tenuous clouds, aerosol
layers in day-time and night time, keep cloud structure (in left segment), keep rain falling out

of the clouds.

This necessitates application of running density twice to meet the cloud detection criteria!
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Figure 35-1. (t8) - Analysis of GLAS—data based simulated ICESat-2 data using the DDA.

oc=3 cutoff =1 a,, = 10 min cluster size = 600 base_threshold = 6E+14 downsampling = 1
threshold_sensitivity = 0.9 threshold_segment_length = 2 quantile = 0.75
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Figure 35-2. (t32) - Analysis of GLAS—data based simulated ICESat-2 data using the DDA.

oc=3 cutoff = 1 an, = 10 min cluster size = 600 base_threshold = 12E+414 downsampling = 1
threshold_sensitivity = 0.9 threshold_segment_length = 2 quantile = 0.75
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Figure 35-3. (t33) - Analysis of GLAS—data based simulated ICESat-2 data using the DDA.

o=3 cutoff =1 a,, = 10 min cluster size = 600 base_threshold = 10E+14 downsampling = 1
threshold_sensitivity = 0.9 threshold_segment_length = 2 quantile = 0.75
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Figure 35-4. (t34) - Analysis of GLAS—data based simulated ICESat-2 data using the DDA.
o = 3 cutoff = 1 a,, = 10 min cluster size = 600 base_threshold = 10E4+14 downsampling = 1 threshold_sensitivity
=09 threshold_segment_length = 3 quantile = 0.75
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Figure 35-5. (t36) - Analysis of GLAS—data based simulated ICESat-2 data using the DDA.

o=3 cutoff =1 a,, = 10 min cluster size = 600 base_threshold = 10E+14 downsampling = 1
threshold_sensitivity = 0.9 threshold_segment_length = 4 quantile = 0.75
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Figure 35-6. (t53) - Analysis of GLAS—data based simulated ICESat-2 data using the DDA.

oc=3 cutoff = 1 an, = 10 min cluster size = 600 base_threshold = 10E+414 downsampling = 1
threshold_sensitivity = 0.9 threshold_segment_length = 20 quantile = 0.75
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Figure 35-7. (t38) - Analysis of GLAS—data based simulated ICESat-2 data using the DDA.

oc=3 cutoff = 1 an, = 10 min cluster size = 600 base_threshold = 10E+414 downsampling = 1
threshold_sensitivity = 1 threshold_segment_length = 2 quantile = 0.75
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Figure 35-8. (t44) -Analysis of GLAS—data based simulated ICESat-2 data using the DDA.

oc=3 cutoff = 1 an, = 10 min cluster size = 600 base_threshold = 10E+414 downsampling = 1
threshold_sensitivity = 1 threshold_segment_length = 2 quantile = 0.9
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Figure 35-9. (t45) -Analysis of GLAS—data based simulated ICESat-2 data using the DDA.

oc=3 cutoff = 1 an, = 10 min cluster size = 600 base_threshold = 10E+414 downsampling = 1
threshold_sensitivity = 1 threshold_segment_length = 2 quantile = 0.85
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Figure 35-10. (t46) - Analysis of GLAS—data based simulated ICESat-2 data using the DDA.

oc=3 cutoff = 1 an, = 10 min cluster size = 600 base_threshold = 10E+414 downsampling = 1
threshold_sensitivity = 0.9 threshold_segment_length = 2 quantile = 0.9
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Figure 35-11. (t47)- Analysis of GLAS—data based simulated ICESat-2 data using the DDA.

oc=23 cutoff =1 a,, = 10 min cluster size = 600 base_threshold = 10E+14

threshold_sensitivity = 0.9 threshold_segment_length = 2

downsampling = 1

quantile = 0.85
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Figure 35-12. (t54) - Analysis of GLAS—data based simulated ICESat-2 data using the DDA.

oc=23 cutoff =1 a,, = 10 min cluster size = 600 base_threshold = 10E+14

threshold_sensitivity = 0.9 threshold_segment_length = 2

downsampling = 1

quantile = 0.8
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10.5 Sensitivity Studies for Double-Density Runs

The following table shows the parameter combinations that were used for double-density runs:

Parameter | Sigma | Anisotropy | Cutoff | Down- | Minimum| Threshold| Threshold| Threshold| Quantile
Set Name sample | Cluster Bias Factor Window
Size

t48%* 3 10 1 1 600 10E+14 1 2 0.9, 0.7
t49* 3 10 1 1 600 10E+14 1 2 0.95, 0.7
t50 3 10 1 1 600 10E+14 1 2 0.99, 0.8
t51 3 10, 20 1 1 600 10E+14 1 2 0.99, 0.8
52 3 10, 20 1 1 300, 600 | 10E+14 1 2 0.99, 0.8
t55* 3 10, 20 1 1 300, 600 | 10E+14 1, 0.9 2 0.99, 0.8
t56* 3 10, 20 1 1 300, 600 | 10E+14 09,1 2 0.99, 0.8
t57 3 10, 15 1 1 300, 600 | 10E+14 09,1 2 0.99, 0.8
tH8* 3 10, 20 1 1 400, 600 | 10E+14 09,1 2 0.99, 0.8
tH9* 3 10, 20 1 1 300, 600 | 12E+14 09,1 2 0.99, 0.8
60 3 10, 20 1 1 300, 600 | 10E+14 09,1 2 0.95, 0.8
t61 3 10, 15 1 1 300, 600 | 10E+14 09,1 2 0.95, 0.8
62 3 10, 15 1 1 300, 600 | 12E+14 09,1 2 0.95, 0.8
t63* 3 10, 30 1 1 300, 600 | 10E+14 09,1 2 0.99, 0.8
t64* 3 10, 20 1 1 200, 600 | 10E+14 09,1 2 0.99, 0.8
t65* 3 10, 20 1 1 300, 600 | 10E+14 09,1 2 0.97, 0.8
t66* 3 10, 20 1 1 300, 600 | 10E+14 09,1 2 0.98, 0.8
t67* 3 10, 20 1 1 150, 600 | 10E+14 09,1 2 0.99, 0.8

Table 6: Double Density Runs. *Denotes an experiment for which results are shown in Figure 36. (t56)
Best parameter combination for a double density run for analysis of 2017-Oct GLAS-based ATL04 data. (t64)
Alternative best parameter combination for a double density run for analysis of 2017-Oct GLAS-based ATL04 data
(declustering size 200 in run 1, otherwise same as (t56)).

For each experiment, the following plots are shown (left column, density run 1 (labeled 0), right

column, density run 2 (labeled 1, py convention)):

(a) Raw NRB Data - Valid Bins

(b) Kernel Matrix

(c) Density - Valid Bins

(d) Thresholds Along Track

(e) Density - Thresholded

(f) Density - Declustered

(g) left: Final Cloud Mask (Binary) , right: Final Cloud Mask over Density 1
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Explanations of results in Figure 35

(1)

Balance the quantiles between density runl and density run2 (t48)-(t50). (t48), (t49) Not
good. Keep false positives, make holes in the tenuous cloud layers. Threshold function is

bad, quantiles too low. (t50) reaches acceptable quantiles.

Different anisotropies for density runl and density run2. Also different min cluster sizes. (t56)
is the best parameter combination. Notably, (t55), where the threshold sensitivity factors are
switched, is a lot worse. (t56) identifies just enough clouds in pass 1, to bring out the more
tenuous layers in the second density run. Layers are smooth on top, with rain falling out of
the bottom. Note that the small clouds (day-time section) are actually clouds, visible in the
density fields. (t63) with anisotropy (10,30) makes the tenuous clouds a little too wide. Use

(10,20) for anisotropies.

Different cluster sizes. (t64) with min cluster size 200, otherwise parameters same as (t56).
Mean confidence for (t64) is higher (0.801) than for (t56), making this a slightly better
parameter combination than (t56) (conf 0.79 on average). (t67) with min cluster size 150:
results are not much different from those of (t64). Because more day time data need to be
analyzed and because of robustness, keep (t64) as the best run. See the section on ” Testing”
- the SIPS code uses a somewhat different implementation of the declustering routine, this

still needs to be tested. Hence opt for min cluster size of 200.

Checking intermediate quantiles, (t65) with ¢ = 0.97,0.8, (t66) with ¢ = 0.98,0.8. The
quantiles of ¢ = 0.99,0.8 indeed yield the best results, evaluated by the same criteria as

before. Hence (t56) and (t64) are best. Testing of the declustering routines is still to be done.

In summary, very good results are obtained using double-density runs with parameters (t56)!
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Figure 5.1-1.

Pass 0 Denshty - Vaid ins

Dbtance Nong Track

Pass 0: Density - Thesholded

20000 20000

© 1000

(t48) - Analysis of GLAS—data based simulated ICESat-2 data using the DDA.

oc=3

threshold_sensitivity = 1

cutoff =1 am = 10

min cluster size = 600

threshold_segment_length = 2

base_threshold = 10E+14
quantile = 0.9,0.7

downsampling = 1
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Figure 36-1. (t49) - Analysis of GLAS—data based simulated ICESat-2 data using the DDA.

oc=3 cutoff =1 am = 10 min cluster size = 600 base_threshold = 10E+14 downsampling = 1
threshold_sensitivity = 1 threshold_segment_length = 2 quantile = 0.95,0.7
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Figure 36-2. (t55) - Analysis of GLAS—data based simulated ICESat-2 data using the DDA.

c=3 cutoff =1 a, =10,20 min cluster size = 300,600  base_threshold = 10E4+14  downsampling = 1
threshold_sensitivity = 1, 0.9 threshold _segment_length = 2 quantile = 0.99, 0.8
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Figure 36-3. (t56) - Analysis of GLAS—data based simulated ICESat-2 data using the DDA.

c=3 cutoff =1 a, =10,20 min cluster size = 300,600  base_threshold = 10E4+14  downsampling = 1
threshold_sensitivity = 0.9, 1 threshold _segment_length = 2 quantile = 0.99, 0.8
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Figure 36-4. (t58) - Analysis of GLAS—data based simulated ICESat-2 data using the DDA.

c=3 cutoff =1 a, =10,20 min cluster size = 400,600  base_threshold = 10E4+14  downsampling = 1
threshold_sensitivity = 0.9,1 threshold_segment_length = 2 quantile = 0.99, 0.8
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Figure 36-5. (t59) - Analysis of GLAS—data based simulated ICESat-2 data using the DDA.

c=3 cutoff =1 a, =10,20 min cluster size = 300,600  base_threshold = 10E4+14  downsampling = 1
threshold_sensitivity = 0.9, 1 threshold _segment_length = 2 quantile = 0.99, 0.8
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Figure 36-6. (t63) - Analysis of GLAS—data based simulated ICESat-2 data using the DDA.

c=3 cutoff =1 am, =10,30 min cluster size = 300, 600  base_threshold = 10E4+14  downsampling = 1
threshold_sensitivity = 0.9, 1 threshold _segment_length = 2 quantile = 0.99, 0.8
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Figure 36-7. (t64) - Analysis of GLAS—data based simulated ICESat-2 data using the DDA.

oc=3 cutoff = 1 am = 10,20 min cluster size = 600 base_threshold = 10E+14 downsampling = 1
threshold_sensitivity = 0.9, 1 threshold _segment_length = 2 quantile = 0.99, 0.8
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(t65) - Analysis

v S i

13

of GLAS—data based simulated ICESat-2 data using the DDA.
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threshold _sensitivity
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=009, 1
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threshold _segment_length = 2

base_threshold = 10E+14

quantile = 0.97, 0.8
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Figure 36-9. (t66) - Analysis of GLAS—data based simulated ICESat-2 data using the DDA.

c=3 cutoff =1 am, =10,20 min cluster size = 300, 600  base_threshold = 10E4+14  downsampling = 1
threshold_sensitivity = 0.9, 1 threshold _segment_length = 2 quantile = 0.98, 0.8
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Figure 36-10. (t67) Analysis of GLAS-data based simulated ICESat-2 data using the DDA.

c=3 cutoff =1 am, =10,20 min cluster size = 150, 600  base_threshold = 10E4+14  downsampling = 1
threshold_sensitivity = 0.9, 1 threshold _segment_length = 2 quantile = 0.99, 0.8
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11 Quality Assessment

11.1 Summary

A confidence measure will be defined for each layer. The idea of the confidence measure is to provide
a numerical value for the confidence in layer detection, that works for optically thick clouds, tenuous
clouds and aerosols. The particular strength of the DDA lies in its ability to detect tenuous cloud
layers and aerosols in night-time and day-time conditions. Specifically, the confidence measure

needs to indicate when tenuous clouds are detected with high confidence.

An algorithm that quantifies confidence as a numerical value is introduced for quality assessment.

Mathematical Q/A algorithm description, Q/A plots and applications are included as subsection.

The algorithms yields a vector of values
layer_conf_dens(layerno)

where layerno is the maximal number of cloud layers (currently 10). The layer confidence generally

has a value between 0 and 1, but can assume values outside of this range.

The algorithm to be used is termed “Half-gap confidence”. In addition, the half-gap confidence
is compared to an alternative “3-bin confidence”. “Half-gap confidence” is a better measure than

“3-bin confidence”.

11.2 For Data Dictionary

layer_conf_dens(layerno)

The measure layer confidence, or layer confidence (from density-dimension algorithm) or layer confidence
(from DDA ), calculated for each detected cloud layer, quantifies the confidence of detection of a given
layer from the NRB values, using the DDA. Layer confidence (DDA) is a vector with layerno values,
one value per detected layer (NaN for vector entries for which no layer was actually detected).

Currently, layerno = 10, the maximal number of detectable layers is 10. Layer confidence is
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normalized such that values generally fall between zero and 1 and assume a good spread across the
range [0,1] for most atmospheric layers. However, layer confidence can assume values outside of

this range (see subsection (11.5) “On the range of half-gap layer confidence values” below).

11.3 Q/A Algorithm

The concept of this confidence measure is to utilize the ratio of average density inside a cloud to
average density in the region surrounding the cloud. A confidence value is given for each layer in

ATLO09.

We use the convention: n_profile_valid = n,, = 467 for the number of valid bins in each profile. A

bin n takes an integer value between 1 and 467, where the profile top = 1 and profile bottom =

top nboﬁ] )

467. Consider cloud layer s in column (profile) j: [n,7, n.%

Definition: The jth cloud layer thickness is defined as:

top nbo?‘ 41

cloud_thick; = ct; = |ns7j e

Definition: The half-gap distance to the next cloud layer rounded to the nearest integer is defined

as follows:

top bot
M1

Ing -1
dist_above = mazx< 3, Tmmd( ] 5 )

If s is the top cloud layer, then take the half-gap to the top of the profile (bin 1):

top
. Ngj — 1
dist_above = max{?), round<’2> }

Similarly,

bot top
pbot — ptoP | 1
dist_below = mam{B, round( 5, 25+1»]| > }

If s is the lowest cloud layer, then take the half-gap to the bottom of the profile (bin n,):

Npy — nls"’t
dist_below = mazx< 3, round TJ
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The number 3 in the maximum function arises from the definition of a cloud-layer, which requires
a minimum of 3 consecutive bins of the same type to define a layer between cloud and non-cloud

(see section (3.7) in ATBD Atmos Part II).

Definition: Half-gap confidence (ks ;): The confidence measure for cloud layer s in the jth column

(ks,j), termed layer confidence(dda), or more specifically, half-gap layer confidence,
layer_conf_dda(layerno)

where layerno is the maximal number of cloud layers (currently 10), is determined by calculating

the following quantities.

The average density in the half-gap above and the half-gap below the cloud is given by

dist_above prnorm top . dist_below pnorm bot .
> fd (”s,j - Z)] + [Z¢—1 Ia (”s,j + 2)]

A=A, =
7 dist_above + dist_below

The average density in the cloud is given by

n

bot
S, norm (.,
1 )]

top _ _bot
o — I

B=B,, = ’
n

The confidence is given by

Asj
kej=1-— =221
S, Bs7j

Since B is for a cloud and A is for a non-cloud, we always have A < B, and generally 0 < % <1
and ||k, ;|| < 1. Confidence close to 1 — good, close to zero — bad. However, layer confidence can
assume values outside of this range (see section (15.1) “On the range of half-gap layer confidence

values”).

The confidence value remains meaningful, if it is outside of the range [0,1]. If confidence is larger

than one, then the cloud determination is even better.

Definition: 3-bin confidence (ki’ ;) This definition of confidence compares the average density inside

the cloud to the average density of the three adjacent bins outside the cloud. Let dist_below =
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dist_above = 3 and use the same formulas for A and B to attain Ai j and Bg e The 3-bin confidence

is then given by

3
k‘g — 1 _ AS:j
83 B3
57‘7
11.4 Q/A Plots
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EJDDDDL " ;.,_*"‘f - N P o
E WLA? ‘;.;“l "b’&‘ - ) . 'i “vﬁ““ o -
>

g mim AP e B et -
0 & 3 Httnct ot TR L

5000 | I I I I I I I I I o
0 1.2 14 16 18 2

1
Along Track Distance [m] %10°

O Cloud Layer Tops.

O Cloud Layer Bottoms

Half Gap QA Confidence Flags T56

Vertical Distance [m]

Along Track Distance [m] %10

Cloud Layer Tops
Cloud Layer Bottoms

Figure 37. Confidence measures 3-bin confidence (top) and half-gap confidence (bottom).
Applied to 7000+ (7143) profile synthetic data set representing different cloud types and night-time/ day-time transi-
tion, 2017-Nov version of GLAS-based simulated ATL04 data. Confidence value shown for layer top and layer bottom
applies to entire layer (t56). See Table 6 for parameters.

As seen in Figure 37, both confidence measures work well for optically thick cloud layers, such as
the layer between 0.6 and 1 (x10° m) along track distance. However, for complex and tenuous
layers during night-time, such as the layer between 0 and 0.6 (x10° m) along track distance, and
for any layers during day-time (1.2 to 2 x10° m along track distance), half-gap confidence is a
better measure than 3-bin confidence. The measure 3-bin confidence works well only in situations
where the density gradient is high at the cloud boundary. The detection of tenuous layers and
layers during day-time relies on the difference of aggregated values over a larger region and this

is reflected in the half-gap confidence. Therefore, half-gap confidence will be reported as a Q/A
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measure on the product ATL09. Space for a second Q/A measure is reserved for future use.

11.5 Applications

The half-gap confidence measure is now applied to evaluate those results from the sensitivity studies
that were deemed best in their category, (a) t8, (b) t54, (c) t56, (d) t64 (see Figure 38). Assume,
for the sake of a thought experiment, that data characteristics changed unknown to the user while
parameters of (t8) were being applied. Now the confidence measure tells us that some clouds have
a low confidence, and these are the false positives (apparently detected layers that are not actually
clouds). Similarly, the confidence measure allows to decide that the double-density runs (t56) and
(t64) yield better results than the single-density run (t54), by visual inspection of the regions of

lower confidence.

In the clouds of complex morphology, such as the layer between 0 and 0.6 (x10° m) along track
distance, some areas of low confidence occur because the half-distance is very short internal to the
clouds. This is actually correct, because in these locations several layers are identified, whereas in

neighboring regions only one layer is found.
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Figure 38. Half-gap confidence of determination of atmospheric layer boundaries. Applied
to 70004 (7143) profile synthetic data set representing different cloud types and night-time/ day-time transition,
2017-Nov version of GLAS-based simulated ATL04 data. Confidence value shown for layer top and layer bottom

applies to entire layer. (a) t8, (b) t54, (c) t56, (d) t64. See Tables 5 and 6 for parameters.
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12

Testing

Code testing is part of the process of implementation of the algorithm, developed at CU Boulder, by

the SIPS. In this section, results of comparisons of the CU code and the SIPS code are described, and

criteria for acceptance of the SIPS code derived. For comparison output data sets and associated

figures are derived for each algorithm step (presented in subsection on “Testing Steps”). At time

of writing, testing is still in progress.

Interim results are as follows:

(1)
(2)
3)

Density matrix matches perfectly.
Density field calculation for density run 1 matches well

Threshold function: Matching threshold functions is a complex topic. First implementation of
the threshold function had to be checked. However, differences in the threshold function values
can arise when different library functions are used for quantile calculation. This is further
examined in the section on “Quantile Calculation — Changes” (12.2). After this divergence
was discovered, we wrote a piece a code for the CU algorithm that calculates quantiles the
same way as the SIPS FORTRAN code. Now, thresholds match very well (see figure panel
“threshold quantile with rounding, Threshold Relative Error pass 0 (t56)” in Figure 39-
4). Comparison with figure panel “threshold quantile with linear interpolation, Threshold
Relative Error pass 0 (t56)” in Figure 39-2 demonstrates that the quantile calculation was a

major source of error. However, errors propagate from the declustering step onwards.

Decluster algorithm. Here significant differences exist between CU code and SIPS code (see
figure panel “threshold quantile with rounding, Decluster Mask Discrepancy pass 0 (t56)” in
Figure 39-4). The ASAS decluster mask shows that large sections of optically thick clouds

are lost in the current code version.

The number of nrb valid bins per profile appears to fluctuate in the input ATL04 data. This
would lead to an error that propagates through the end of run 1 and into run 2 where large

differences are noted.
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Code testing also motivated the following small CU algorithm changes:

(1) Implementation of masking of run 1 cloud regions before calculation of run 2 densities:

(la) NaN handling: In evaluating the kernel, any bins neighboring the center bin that have values
contribute to the sum. Alternative is to apply the kernel only if all neighboring bins have

values. The alternative would lead to more data loss.

(1b) Inside the mask, values are replaced by zeroes in code version v110.0. This is suboptimal.

We have to explore how to best fill the mask region.

(2) Change of quantile calculation (see section on “Quantile Calculation — Changes” (12.2)):
(a) mquantiles default, (b) linear interpolation, (c¢) rounding [rounding is now the accepted

method for quantile calculation].

12.1 Testing Steps

For comparison output data sets and associated figures are derived for each algorithm step. Here
we present figures showing results of the CU DDA runs and the SIPS/ASAS DDA runs for each
algorithm step, and an additional comparison plot per step. When sufficient matching is achieved,
we move to the next step. The work presented here is carried out in collaboration between the
CU group and the SIPS group; all plots are created by the CU group. Data sets used are the
GLAS-based simulated ATL04 data sets, as before (7143 profiles synthetic data set).

In the following, we present 4 series of figures:

(1) (tb4) single-density run, linear interpolation for quantile determination

(2) (t56) double-density run, linear interpolation for quantile determination

(3) (t54) single-density run, rounding for quantile determination

(4) (t56) double-density run, rounding for quantile determination
Percentage of bins with mask differences between CU Code and SIPS code is really low (1%) but
number of profiles with incorrectly identified layers is high and needs more work.
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Results: Number of profiles with incorrectly identified layers: (total profiles: 7143).

T_54 LinearInterp: 2003 incorrect profiles — 28.614% T _56_LinearInterp: 2354 incorrect profiles
— 33.629%

T_54_Rounding: 2068 incorrect profiles — 29.543% T_56_Rounding: 2386 incorrect profiles —
34.086%
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Threshold Quantile with Linear Interpolation.  11.15.2017 v9 T_54
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Figure 39-1. Testing: (t54) single density run, linear interpolation for quantile determination
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